Suppr超能文献

高效挖掘天然 NADH 利用脱氢酶使谷氨酸棒杆菌赖氨酸合成途径的系统辅酶工程成为可能。

Efficient mining of natural NADH-utilizing dehydrogenases enables systematic cofactor engineering of lysine synthesis pathway of Corynebacterium glutamicum.

机构信息

Key Laboratory of Industrial Biocatalysis (Ministry of Education), Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.

Key Laboratory of Industrial Biocatalysis (Ministry of Education), Department of Chemical Engineering, Tsinghua University, Beijing 100084, China; Tsinghua Innovation Center in Dongguan, Dongguan 523808, China; Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China.

出版信息

Metab Eng. 2019 Mar;52:77-86. doi: 10.1016/j.ymben.2018.11.006. Epub 2018 Nov 17.

Abstract

Increasing the availability of NADPH is commonly used to improve lysine production by Corynebacterium glutamicum since 4 mol of NADPH are required for the synthesis of 1 mol of lysine. Alternatively, engineering of enzymes in lysine synthesis pathway to utilize NADH directly can also be explored for cofactor balance during lysine overproduction. To achieve such a goal, enzyme mining was used in this study to quickly identify a full set of NADH-utilizing dehydrogenases, namely aspartate dehydrogenase from Pseudomonas aeruginosa (PaASPDH), aspartate-semialdehyde dehydrogenase from Tistrella mobilis (TmASADH), dihydrodipicolinate reductase from Escherichia coli (EcDHDPR), and diaminopimelate dehydrogenase from Pseudothermotoga thermarum (PtDAPDH). This allowed us to systematically perturb cofactor utilization of lysine synthesis pathway of C. glutamicum for the first time. Individual overexpression of PaASPDH, TmASADH, EcDHDPR, and PtDAPDH in C. glutamicum LC298, a basic lysine producer, increased the production of lysine by 30.7%, 32.4%, 17.4%, and 36.8%, respectively. Combinatorial replacement of NADPH-dependent dehydrogenases in C. glutamicum ATCC 21543, a lysine hyperproducer, also resulted in significantly improved lysine production. The highest increase of lysine production (30.7%) was observed for a triple-mutant strain (27.7 g/L, 0.35 g/g glucose) expressing PaASPDH, TmASADH, and EcDHDPR. A quadruple-mutant strain expressing all of the four NADH-utilizing enzymes allowed high lysine production (24.1 g/L, 0.30 g/g glucose) almost independent of the oxidative pentose phosphate pathway. Collectively, our results demonstrated that a combination of enzyme mining and cofactor engineering was a highly efficient approach to improve lysine production. Similar strategies can be applied for the production of other amino acids or their derivatives.

摘要

增加 NADPH 的可用性通常用于提高谷氨酸棒状杆菌的赖氨酸产量,因为合成 1 摩尔赖氨酸需要 4 摩尔 NADPH。或者,也可以探索在赖氨酸过量生产过程中,通过工程改造赖氨酸合成途径中的酶来直接利用 NADH,以实现辅酶平衡。为了实现这一目标,本研究中使用了酶挖掘技术来快速鉴定一整套 NADH 利用脱氢酶,即铜绿假单胞菌中的天冬氨酸脱氢酶(PaASPDH)、运动栖热菌中的天冬氨酸半醛脱氢酶(TmASADH)、大肠杆菌中的二氢二吡啶羧酸还原酶(EcDHDPR)和嗜热栖热菌中的二氨基庚二酸脱氢酶(PtDAPDH)。这使我们能够首次系统地扰动谷氨酸棒状杆菌赖氨酸合成途径中的辅酶利用。在基本赖氨酸生产菌 LC298 中单独过表达 PaASPDH、TmASADH、EcDHDPR 和 PtDAPDH,分别将赖氨酸产量提高了 30.7%、32.4%、17.4%和 36.8%。在赖氨酸高产菌 ATCC 21543 中组合替换 NADPH 依赖性脱氢酶也导致赖氨酸产量显著提高。表达 PaASPDH、TmASADH 和 EcDHDPR 的三重突变株(27.7g/L,0.35g/g 葡萄糖)的赖氨酸产量提高幅度最大(30.7%)。表达所有四种 NADH 利用酶的四重突变株几乎不依赖氧化戊糖磷酸途径就能实现高赖氨酸产量(24.1g/L,0.30g/g 葡萄糖)。总之,我们的研究结果表明,酶挖掘和辅酶工程的组合是提高赖氨酸产量的一种高效方法。类似的策略可应用于其他氨基酸或其衍生物的生产。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验