Suppr超能文献

基于质量的分层导致临床试验荟萃分析的选择偏倚。

Stratification by quality induced selection bias in a meta-analysis of clinical trials.

机构信息

Department of Health Services Research and Policy, Research School of Population Health, Australian National University, Canberra, ACT, Australia.

Department of Anaesthesia, The Prince Charles Hospital, Brisbane, Queensland, Australia; School of Population Health, University of Queensland, Brisbane, Queensland, Australia.

出版信息

J Clin Epidemiol. 2019 Mar;107:51-59. doi: 10.1016/j.jclinepi.2018.11.015. Epub 2018 Nov 17.

Abstract

OBJECTIVES

The inconsistency demonstrated across strata when using different scales has been attributed to quality scores, and stratification continues to be done using risk of bias domain judgments. This study examines if restricting primary meta-analyses to studies at low risk of bias or presenting meta-analyses stratified according to risk of bias is indeed the right approach to explore potential methodological bias.

STUDY DESIGN AND SETTING

Reanalysis of the impact of quality subgroupings in an existing meta-analysis based on 25 different scales.

RESULTS

We demonstrate that quality stratification itself is the problem because it induces a spurious association between effect size and precision within stratum. Studies with larger effects or lesser precision tend to be of lower quality-a form of collider-stratification bias (stratum being the common effect of the reasons for these two outcomes) that leads to inconsistent results across scales. We also show that the extent of this association determines the variability in effect size and statistical significance across strata when conditioning on quality.

CONCLUSIONS

We conclude that stratification by quality leads to a form of selection bias (collider-stratification bias) and should be avoided. We demonstrate consistent results with an alternative method that includes all studies.

摘要

目的

在使用不同量表时,各层之间的不一致性归因于质量评分,并且分层仍然是基于偏倚风险领域的判断进行的。本研究检验了将主要荟萃分析仅限于低偏倚风险的研究或根据偏倚风险进行分层呈现荟萃分析,是否确实是探索潜在方法学偏倚的正确方法。

研究设计和设置

基于 25 种不同量表的现有荟萃分析中对质量分组的影响进行再分析。

结果

我们证明了质量分层本身就是问题所在,因为它在层内引起了效应大小和精度之间的虚假关联。效应较大或精度较低的研究往往质量较低——这是一种混杂分层偏倚(层是这两个结果的原因的共同效应),导致各量表之间的结果不一致。我们还表明,这种关联的程度决定了在质量条件下,各层之间效应大小和统计显著性的可变性。

结论

我们的结论是,质量分层导致了一种选择偏倚(混杂分层偏倚),应予以避免。我们通过包含所有研究的替代方法证明了一致的结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验