Suppr超能文献

贝宁地区致倦库蚊种群对氯菊酯和滴滴涕抗药性的分子基础。

Molecular basis of permethrin and DDT resistance in an Anopheles funestus population from Benin.

机构信息

International Institute of Tropical Agriculture, Cotonou, 08 BP 0932, Benin.

University of Abomey Calavi, BP 526, Cotonou, Benin.

出版信息

Parasit Vectors. 2018 Nov 20;11(1):602. doi: 10.1186/s13071-018-3115-y.

Abstract

BACKGROUND

Insecticide resistance in Anopheles mosquitoes is threatening the success of malaria control programmes. In order to implement suitable insecticide resistance management strategies, it is necessary to understand the underlying mechanisms involved. To achieve this, the molecular basis of permethrin and DDT resistance in the principal malaria vector, Anopheles funestus from inland Benin (Kpome), was investigated.

RESULTS

Here, using a microarray-based genome-wide transcription and qRT-PCR analysis, we showed that metabolic resistance mechanisms through over-expression of cytochrome P450 and glutathione S-transferase genes (GSTs) are a major contributor to DDT and permethrin resistance in Anopheles funestus from Kpome. The GSTe2 gene was the most upregulated detoxification gene in both DDT- [fold-change (FC: 16.0)] and permethrin-resistant (FC: 18.1) mosquitoes suggesting that upregulation of this gene could contribute to DDT resistance and cross-resistance to permethrin. CYP6P9a and CYP6P9b genes that have been previously associated with pyrethroid resistance were also significantly overexpressed with FC 5.4 and 4.8, respectively, in a permethrin resistant population. Noticeably, the GSTs, GSTd1-5 and GSTd3, were more upregulated in DDT-resistant than in permethrin-resistant Anopheles funestus suggesting these genes are more implicated in DDT resistance. The absence of the L1014F or L1014S kdr mutations in the voltage-gated sodium channel gene coupled with the lack of directional selection at the gene further supported that knockdown resistance plays little role in this resistance.

CONCLUSIONS

The major role played by metabolic resistance to pyrethroids in this An. funestus population in Benin suggests that using novel control tools combining the P450 synergist piperonyl butoxide (PBO), such as PBO-based bednets, could help manage the growing pyrethroid resistance in this malaria vector in Benin.

摘要

背景

蚊虫对杀虫剂的抗药性正威胁着疟疾控制项目的成功。为了实施合适的杀虫剂抗性管理策略,有必要了解相关的潜在机制。为此,我们研究了来自贝宁内陆城镇 Kpome 的主要疟疾传播媒介——致倦库蚊对拟除虫菊酯和滴滴涕的抗性的分子基础。

结果

在这里,我们使用基于微阵列的全基因组转录组和 qRT-PCR 分析表明,通过细胞色素 P450 和谷胱甘肽 S-转移酶(GSTs)基因的过度表达来实现代谢抗性机制是导致 Kpome 致倦库蚊对滴滴涕和拟除虫菊酯产生抗性的主要原因。GSTE2 基因是滴滴涕(FC:16.0)和拟除虫菊酯(FC:18.1)抗性蚊虫中上调最明显的解毒基因,表明该基因的上调可能有助于滴滴涕抗性和对拟除虫菊酯的交叉抗性。先前与拟除虫菊酯抗性相关的 CYP6P9a 和 CYP6P9b 基因也分别在拟除虫菊酯抗性种群中显著过表达,倍数分别为 5.4 和 4.8。值得注意的是,GSTs、GSTD1-5 和 GSTD3 在滴滴涕抗性蚊虫中比在拟除虫菊酯抗性蚊虫中上调更为明显,表明这些基因在滴滴涕抗性中更为重要。电压门控钠离子通道基因中不存在 L1014F 或 L1014S kdr 突变,且该基因没有定向选择,这进一步支持了击倒抗性在这种抗性中作用不大。

结论

本研究中贝宁致倦库蚊种群对拟除虫菊酯的代谢抗性起主要作用,表明使用结合了 P450 增效剂胡椒基丁醚(PBO)的新型控制工具,如 PBO 基蚊帐,可能有助于控制贝宁境内这种疟疾传播媒介中日益增长的拟除虫菊酯抗性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ab1/6247751/e0041937ef9e/13071_2018_3115_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验