Suppr超能文献

mRNA剪接调节因子对有丝分裂的控制确保了初级纤毛的形成。

Mitotic control by mRNA splicing regulators ensures primary cilia formation.

作者信息

Kim Ji Hyun, Lee Ji Eun

机构信息

Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University, Seoul, South Korea.

Samsung Genome Institute (SGI), Samsung Medical Center, Seoul, South Korea.

出版信息

Anim Cells Syst (Seoul). 2016 Dec 7;21(1):17-22. doi: 10.1080/19768354.2016.1261738. eCollection 2017.

Abstract

The biogenesis of the primary cilium is coordinated with cell cycle exit/re-entry in most types of cells. After serum starvation, the cilia-generating cells enter quiescence and produce the primary cilium; upon re-addition of serum, they re-enter the cell cycle and resorb the cilium. We previously identified novel mechanisms to link cell cycle progression and ciliogenesis by high-content genome-wide RNAi cell-based screening. In the present study, we pay attention to reveal the impact of mRNA splicing on cilia assembly after mitosis of cell cycle. We demonstrate that splicing regulators such as SON and XAB2 play an important role in mitosis exit, and thus affect ciliogenesis in G1/G0 phases. Knockdown of the splicing regulators in hTERT-RPE1 cells caused abnormal G2/M arrest under both serum addition and serum starvation, indicating defects in mitosis exit. Moreover, the knockdown cells failed to assemble the cilia under serum starvation and an inhibition of mRNA splicing using SSA, a spliceosome inhibitor, also revealed ciliogenesis defect. Finally, we show that the SSA-treated zebrafish display abnormal vascular development as a ciliary defect. These findings suggest the pivotal role of mRNA splicing regulators in cilia assembly and underscore the importance of mitotic regulation in ciliogenesis.

摘要

在大多数类型的细胞中,初级纤毛的生物发生与细胞周期退出/重新进入过程相协调。血清饥饿后,产生纤毛的细胞进入静止期并产生初级纤毛;重新添加血清后,它们重新进入细胞周期并使纤毛吸收。我们之前通过基于全基因组RNA干扰的高内涵细胞筛选,鉴定出了将细胞周期进程与纤毛发生联系起来的新机制。在本研究中,我们着重揭示细胞周期有丝分裂后mRNA剪接对纤毛组装的影响。我们证明,诸如SON和XAB2等剪接调节因子在有丝分裂退出过程中发挥重要作用,从而影响G1/G0期的纤毛发生。在hTERT-RPE1细胞中敲低剪接调节因子,在添加血清和血清饥饿条件下均导致异常的G2/M期阻滞,表明有丝分裂退出存在缺陷。此外,敲低细胞在血清饥饿条件下无法组装纤毛,并且使用剪接体抑制剂SSA抑制mRNA剪接也显示出纤毛发生缺陷。最后,我们表明经SSA处理的斑马鱼表现出作为纤毛缺陷的异常血管发育。这些发现表明mRNA剪接调节因子在纤毛组装中起关键作用,并强调有丝分裂调节在纤毛发生中的重要性。

相似文献

1
Mitotic control by mRNA splicing regulators ensures primary cilia formation.
Anim Cells Syst (Seoul). 2016 Dec 7;21(1):17-22. doi: 10.1080/19768354.2016.1261738. eCollection 2017.
2
Genome-wide screen identifies novel machineries required for both ciliogenesis and cell cycle arrest upon serum starvation.
Biochim Biophys Acta. 2016 Jun;1863(6 Pt A):1307-18. doi: 10.1016/j.bbamcr.2016.03.021. Epub 2016 Mar 28.
3
FOP Negatively Regulates Ciliogenesis and Promotes Cell Cycle Re-entry by Facilitating Primary Cilia Disassembly.
Front Cell Dev Biol. 2020 Nov 12;8:590449. doi: 10.3389/fcell.2020.590449. eCollection 2020.
6
Nde1-mediated inhibition of ciliogenesis affects cell cycle re-entry.
Nat Cell Biol. 2011 Apr;13(4):351-60. doi: 10.1038/ncb2183. Epub 2011 Mar 13.
7
Evidence for reciliation of RPE1 cells in late G1 phase, and ciliary localisation of cyclin B1.
FEBS Open Bio. 2013 Aug 11;3:334-40. doi: 10.1016/j.fob.2013.08.002. eCollection 2013.
8
Mechanisms of ciliogenesis suppression in dividing cells.
Cell Mol Life Sci. 2017 Mar;74(5):881-890. doi: 10.1007/s00018-016-2369-9. Epub 2016 Sep 26.
9
Autophagy alteration prevents primary cilium disassembly in RPE1 cells.
Biochem Biophys Res Commun. 2018 Jun 2;500(2):242-248. doi: 10.1016/j.bbrc.2018.04.051. Epub 2018 Apr 13.
10
HDAC3 and HDAC8 are required for cilia assembly and elongation.
Biol Open. 2019 Aug 9;8(8):bio043828. doi: 10.1242/bio.043828.

本文引用的文献

1
Function-driven discovery of disease genes in zebrafish using an integrated genomics big data resource.
Nucleic Acids Res. 2016 Nov 16;44(20):9611-9623. doi: 10.1093/nar/gkw897. Epub 2016 Oct 5.
2
Genome-wide screen identifies novel machineries required for both ciliogenesis and cell cycle arrest upon serum starvation.
Biochim Biophys Acta. 2016 Jun;1863(6 Pt A):1307-18. doi: 10.1016/j.bbamcr.2016.03.021. Epub 2016 Mar 28.
4
Endothelial cilia mediate low flow sensing during zebrafish vascular development.
Cell Rep. 2014 Mar 13;6(5):799-808. doi: 10.1016/j.celrep.2014.01.032. Epub 2014 Feb 20.
5
Autophagy promotes primary ciliogenesis by removing OFD1 from centriolar satellites.
Nature. 2013 Oct 10;502(7470):254-7. doi: 10.1038/nature12606. Epub 2013 Oct 2.
6
The role of the cilium in normal and abnormal cell cycles: emphasis on renal cystic pathologies.
Cell Mol Life Sci. 2013 Jun;70(11):1849-74. doi: 10.1007/s00018-012-1052-z. Epub 2012 Jul 11.
7
The centrosome in cells and organisms.
Science. 2012 Jan 27;335(6067):422-6. doi: 10.1126/science.1209037.
8
The centrosome cycle: Centriole biogenesis, duplication and inherent asymmetries.
Nat Cell Biol. 2011 Oct 3;13(10):1154-60. doi: 10.1038/ncb2345.
9
SON controls cell-cycle progression by coordinated regulation of RNA splicing.
Mol Cell. 2011 Apr 22;42(2):185-98. doi: 10.1016/j.molcel.2011.03.014.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验