Suppr超能文献

用于光声空间相干理论的加性噪声模型。

Additive noise models for photoacoustic spatial coherence theory.

作者信息

Stephanian Brooke, Graham Michelle T, Hou Huayu, Lediju Bell Muyinatu A

机构信息

Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA.

Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD, USA.

出版信息

Biomed Opt Express. 2018 Oct 18;9(11):5566-5582. doi: 10.1364/BOE.9.005566. eCollection 2018 Nov 1.

Abstract

Directly displaying the spatial coherence of photoacoustic signals (i.e., coherence-based photoacoustic imaging) remarkably improves image contrast, signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), and imaging depth when compared to conventional amplitude-based reconstruction techniques (e.g., backprojection, delay-and-sum beamforming, and Fourier-based reconstruction). We recently developed photoacoustic-specific theory to describe the spatial coherence process as a function of the element spacing on a receive acoustic aperture to enable photoacoustic image optimization without requiring experiments. However, this theory lacked noise models, which contributed to significant departures in coherence measurements when compared to experimental data, particularly at higher values of element separation. In this paper, we develop and implement two models based on experimental observations of noise in photoacoustic spatial coherence measurements to improve our existing spatial coherence theory. These models were derived to describe the effects of incident fluence variations, low-energy light sources (e.g., pulsed laser diodes and light-emitting diodes), averaging multiple signals from low-energy light sources, and imaging with light sources that are > 5mm from photoacoustic targets. Results qualitatively match experimental coherence functions and provide similar contrast, SNR, and CNR to experimental SLSC images. In particular, the added noise affects image quality metrics by introducing large variations in target contrast and significantly reducing target CNR and SNR when compared to minimal-noise cases. These results provide insight into additional requirements for optimization of coherence-based photoacoustic image quality.

摘要

与传统的基于幅度的重建技术(例如反投影、延迟求和波束形成和基于傅里叶的重建)相比,直接显示光声信号的空间相干性(即基于相干性的光声成像)可显著提高图像对比度、信噪比(SNR)、对比噪声比(CNR)和成像深度。我们最近开发了光声特定理论,将空间相干过程描述为接收声孔径上元件间距的函数,从而无需实验即可实现光声图像优化。然而,该理论缺乏噪声模型,与实验数据相比,这导致相干测量出现显著偏差,特别是在元件间距较大时。在本文中,我们基于光声空间相干测量中的噪声实验观察结果,开发并实现了两个模型,以改进我们现有的空间相干理论。这些模型旨在描述入射fluence变化、低能量光源(例如脉冲激光二极管和发光二极管)、对来自低能量光源的多个信号进行平均以及使用距离光声目标大于5mm的光源进行成像的影响。结果在定性上与实验相干函数匹配,并为实验SLSC图像提供了类似的对比度、SNR和CNR。特别是,与最小噪声情况相比,添加的噪声通过引入目标对比度的大幅变化并显著降低目标CNR和SNR来影响图像质量指标。这些结果为基于相干性的光声图像质量优化的额外要求提供了见解。 (注:原文中“fluence”可能有误,推测可能是“fluence rate”光通量率之类的,这里按原文翻译)

相似文献

1
Additive noise models for photoacoustic spatial coherence theory.
Biomed Opt Express. 2018 Oct 18;9(11):5566-5582. doi: 10.1364/BOE.9.005566. eCollection 2018 Nov 1.
2
Photoacoustic Spatial Coherence Theory and Applications to Coherence-Based Image Contrast and Resolution.
IEEE Trans Ultrason Ferroelectr Freq Control. 2020 Oct;67(10):2069-2084. doi: 10.1109/TUFFC.2020.2999343. Epub 2020 Jun 2.
3
Short-lag spatial coherence beamforming of photoacoustic images for enhanced visualization of prostate brachytherapy seeds.
Biomed Opt Express. 2013 Sep 4;4(10):1964-77. doi: 10.1364/BOE.4.001964. eCollection 2013.
5
Application of the generalized contrast-to-noise ratio to assess photoacoustic image quality.
Biomed Opt Express. 2020 Jun 10;11(7):3684-3698. doi: 10.1364/BOE.391026. eCollection 2020 Jul 1.
6
Generalized spatial coherence reconstruction for photoacoustic computed tomography.
J Biomed Opt. 2021 Apr;26(4). doi: 10.1117/1.JBO.26.4.046002.
7
In vivo application of short-lag spatial coherence and harmonic spatial coherence imaging in fetal ultrasound.
Ultrason Imaging. 2015 Apr;37(2):101-16. doi: 10.1177/0161734614547281. Epub 2014 Aug 12.
9
Short-lag spatial coherence imaging using minimum variance beamforming on dual apertures.
Biomed Eng Online. 2019 Apr 23;18(1):48. doi: 10.1186/s12938-019-0671-0.
10
Short-lag Spatial Coherence Ultrasound Imaging with Adaptive Synthetic Transmit Aperture Focusing.
Ultrason Imaging. 2017 Jul;39(4):224-239. doi: 10.1177/0161734616688328. Epub 2017 Jan 9.

引用本文的文献

1
High resolution photoacoustic vascular image reconstruction through the fast residual dense generative adversarial network.
Photoacoustics. 2025 Apr 1;43:100720. doi: 10.1016/j.pacs.2025.100720. eCollection 2025 Jun.
2
UPAMNet: A unified network with deep knowledge priors for photoacoustic microscopy.
Photoacoustics. 2024 Apr 25;38:100608. doi: 10.1016/j.pacs.2024.100608. eCollection 2024 Aug.
3
Noise insensitive volumetric fusion method for enhanced photoacoustic microscopy.
J Biomed Opt. 2023 Oct;28(10):106501. doi: 10.1117/1.JBO.28.10.106501. Epub 2023 Oct 4.
4
Photoacoustic-guided surgery from head to toe [Invited].
Biomed Opt Express. 2021 Mar 16;12(4):2079-2117. doi: 10.1364/BOE.417984. eCollection 2021 Apr 1.
5
Generalized spatial coherence reconstruction for photoacoustic computed tomography.
J Biomed Opt. 2021 Apr;26(4). doi: 10.1117/1.JBO.26.4.046002.
6
Photoacoustic image improvement based on a combination of sparse coding and filtering.
J Biomed Opt. 2020 Oct;25(10). doi: 10.1117/1.JBO.25.10.106001.
7
Photoacoustic Spatial Coherence Theory and Applications to Coherence-Based Image Contrast and Resolution.
IEEE Trans Ultrason Ferroelectr Freq Control. 2020 Oct;67(10):2069-2084. doi: 10.1109/TUFFC.2020.2999343. Epub 2020 Jun 2.

本文引用的文献

2
The characterization of an economic and portable LED-based photoacoustic imaging system to facilitate molecular imaging.
Photoacoustics. 2017 Nov 26;9:10-20. doi: 10.1016/j.pacs.2017.11.001. eCollection 2018 Mar.
3
Performance characterization of low-cost, high-speed, portable pulsed laser diode photoacoustic tomography (PLD-PAT) system.
Biomed Opt Express. 2015 Sep 24;6(10):4118-29. doi: 10.1364/BOE.6.004118. eCollection 2015 Oct 1.
4
Localization of Transcranial Targets for Photoacoustic-Guided Endonasal Surgeries.
Photoacoustics. 2015 Jun 9;3(2):78-87. doi: 10.1016/j.pacs.2015.05.002. eCollection 2015 Jun.
5
Transurethral light delivery for prostate photoacoustic imaging.
J Biomed Opt. 2015 Mar;20(3):036002. doi: 10.1117/1.JBO.20.3.036002.
6
Equivalence of time and aperture domain additive noise in ultrasound coherence.
J Acoust Soc Am. 2015 Jan;137(1):132-8. doi: 10.1121/1.4904530.
7
In vivo visualization of prostate brachytherapy seeds with photoacoustic imaging.
J Biomed Opt. 2014 Dec;19(12):126011. doi: 10.1117/1.JBO.19.12.126011.
9
SNR-dependent coherence-based adaptive imaging for high-frame-rate ultrasonic and photoacoustic imaging.
IEEE Trans Ultrason Ferroelectr Freq Control. 2014 Aug;61(8):1419-32. doi: 10.1109/TUFFC.2014.3051.
10
Short-lag spatial coherence beamforming of photoacoustic images for enhanced visualization of prostate brachytherapy seeds.
Biomed Opt Express. 2013 Sep 4;4(10):1964-77. doi: 10.1364/BOE.4.001964. eCollection 2013.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验