Hodges James M, Hao Shiqiang, Grovogui Jann A, Zhang Xiaomi, Bailey Trevor P, Li Xiang, Gan Zhehong, Hu Yan-Yan, Uher Ctirad, Dravid Vinayak P, Wolverton Chris, Kanatzidis Mercouri G
Department of Chemistry , Northwestern University , Evanston , Illinois 60208 , United States.
Department of Materials Science and Engineering , Northwestern University , Evanston , Illinois 60208 , United States.
J Am Chem Soc. 2018 Dec 26;140(51):18115-18123. doi: 10.1021/jacs.8b11050. Epub 2018 Dec 12.
Thermoelectric generators can convert heat directly into usable electric power but suffer from low efficiencies and high costs, which have hindered wide-scale applications. Accordingly, an important goal in the field of thermoelectricity is to develop new high performance materials that are composed of more earth-abundant elements. The best systems for midtemperature power generation rely on heavily doped PbTe, but the Te in these materials is scarce in the Earth's crust. PbSe is emerging as a less expensive alternative to PbTe, although it displays inferior performance due to a considerably smaller power factor Sσ, where S is the Seebeck coefficient and σ is electrical conductivity. Here, we present a new p-type PbSe system, PbNaSe- x%HgSe, which yields a very high power factor of ∼20 μW·cm·K at 963 K when x = 2, a 15% improvement over the best performing PbSe- x%MSe materials. The enhancement is attributed to a combination of high carrier mobility and the early onset of band convergence in the Hg-alloyed samples (∼550 K), which results in a significant increase in the Seebeck coefficient. Interestingly, we find that the Hg cations sit at an off-centered position within the PbSe lattice, and we dub the displaced Hg atoms "discordant". DFT calculations indicate that this feature plays a role in lowering thermal conductivity, and we believe that this insight may inspire new design criteria for engineering high performance thermoelectric materials. The high power factor combined with a decrease in thermal conductivity gives a high figure of merit ZT of 1.7 at 970 K, the highest value reported for p-type PbSe to date.
热电发电机可以将热量直接转化为可用的电能,但效率较低且成本高昂,这阻碍了其大规模应用。因此,热电领域的一个重要目标是开发由地球上储量更丰富的元素组成的新型高性能材料。用于中温发电的最佳体系依赖于重掺杂的PbTe,但这些材料中的碲在地壳中很稀缺。PbSe正作为PbTe的一种成本较低的替代品出现,尽管由于功率因子Sσ(其中S是塞贝克系数,σ是电导率)小得多,其性能较差。在此,我们展示了一种新的p型PbSe体系,即PbNaSe - x%HgSe,当x = 2时,在963 K时其功率因子高达约20 μW·cm·K,比性能最佳的PbSe - x%MSe材料提高了15%。这种增强归因于高载流子迁移率和Hg合金化样品(约550 K)中能带收敛的提前出现,这导致塞贝克系数显著增加。有趣的是,我们发现Hg阳离子位于PbSe晶格内的一个偏心位置,我们将这种位移的Hg原子称为“不协调的”。密度泛函理论计算表明,这一特征在降低热导率方面发挥了作用,我们认为这一见解可能会激发设计高性能热电材料的新准则。高功率因子与热导率的降低相结合,在970 K时给出了高达1.7的优值ZT,这是迄今为止报道的p型PbSe的最高值。