Suppr超能文献

在 n 型 PbSe 中实现与 PbTe 相当的超常平均热电优值的原子级缺陷结构工程。

Atomic Level Defect Structure Engineering for Unusually High Average Thermoelectric Figure of Merit in n-Type PbSe Rivalling PbTe.

机构信息

State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China.

School of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea.

出版信息

Adv Sci (Weinh). 2022 Dec;9(35):e2203782. doi: 10.1002/advs.202203782. Epub 2022 Oct 26.

Abstract

Realizing high average thermoelectric figure of merit (ZT ) and power factor (PF ) has been the utmost task in thermoelectrics. Here the new strategy to independently improve constituent factors in ZT is reported, giving exceptionally high ZT and PF in n-type PbSe. The nonstoichiometric, alloyed composition and resulting defect structures in new Pb Se Te (x = 0-0.125) system is key to this achievement. First, incorporating excess Pb unusually increases carrier mobility (µ ) and concentration (n ) simultaneously in contrast to the general physics rule, thereby raising electrical conductivity (σ). Second, modifying charge scattering mechanism by the authors' synthesis process boosts a magnitude of Seebeck coefficient (S) above theoretical expectations. Detouring the innate inverse proportionality between n and µ ; and σ and S enables independent control over them and change the typical trend of PF to temperature, giving remarkably high PF ≈20 µW cm K from 300 to 823 K. The dual incorporation of Te and excess Pb generates unusual antisite Pb at the anionic site and displaced Pb from the ideal position, consequently suppressing lattice thermal conductivity. The best composition exhibits a ZT of ≈1.2 from 400 to 823 K, one of the highest reported for all n-type PbQ (Q = chalcogens) materials.

摘要

实现高平均热电优值(ZT)和功率因子(PF)一直是热电学的首要任务。在这里,我们报道了一种新的策略,可以独立地提高 ZT 中的组成因素,从而在 n 型 PbSe 中获得异常高的 ZT 和 PF。非化学计量、合金化组成以及新的 PbSeTe(x = 0-0.125)系统中产生的缺陷结构是实现这一目标的关键。首先,掺入过量的 Pb 通常会同时增加载流子迁移率(µ)和浓度(n),这与一般物理规律相反,从而提高电导率(σ)。其次,通过作者的合成工艺改变电荷散射机制,使 Seebeck 系数(S)的幅度大大超过理论预期。绕过 n 和 µ;以及 σ 和 S 之间固有的反比例关系,使它们能够独立控制,并改变 PF 随温度的典型趋势,在 300 到 823 K 之间产生显著的高 PF ≈20 µW cm K。Te 和过量 Pb 的双重掺入会在阴离子位置产生异常的反位 Pb,并使 Pb 从理想位置位移,从而抑制晶格热导率。最佳组成在 400 到 823 K 之间表现出约 1.2 的 ZT,是所有 n 型 PbQ(Q = 硫属元素)材料中报道的最高值之一。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ff93/9762289/c82fb56b9705/ADVS-9-2203782-g009.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验