Center for Anatomy and Cell Biology, Medical University of Vienna, Schwarzspanierstrasse 17, A-1090 Vienna, Austria.
Mass Spectrometry Facility, Max F. Perutz Laboratories (MFPL), Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, A-1030 Vienna, Austria.
Nucleic Acids Res. 2019 Jan 10;47(1):3-14. doi: 10.1093/nar/gky1163.
RNA modifications are present in all classes of RNAs. They control the fate of mRNAs by affecting their processing, translation, or stability. Inosine is a particularly widespread modification in metazoan mRNA arising from deamination of adenosine catalyzed by the RNA-targeting adenosine deaminases ADAR1 or ADAR2. Inosine is commonly thought to be interpreted as guanosine by cellular machines and during translation. Here, we systematically test ribosomal decoding using mass spectrometry. We show that while inosine is primarily interpreted as guanosine it can also be decoded as adenosine, and rarely even as uracil. Decoding of inosine as adenosine and uracil is context-dependent. In addition, mass spectrometry analysis indicates that inosine causes ribosome stalling especially when multiple inosines are present in the codon. Indeed, ribosome profiling data from human tissues confirm inosine-dependent ribosome stalling in vivo. To our knowledge this is the first study where decoding of inosine is tested in a comprehensive and unbiased way. Thus, our study shows novel, unanticipated functions for inosines in mRNAs, further expanding coding potential and affecting translational efficiency.
RNA 修饰存在于所有 RNA 类别中。它们通过影响 mRNA 的加工、翻译或稳定性来控制 mRNA 的命运。肌苷是一种在后生动物 mRNA 中特别普遍的修饰,它是由 RNA 靶向腺苷脱氨酶 ADAR1 或 ADAR2 催化的腺苷脱氨产生的。通常认为肌苷被细胞机器和翻译过程中的鸟嘌呤所解释。在这里,我们系统地使用质谱法测试核糖体解码。我们表明,虽然肌苷主要被解释为鸟嘌呤,但它也可以被解码为腺苷,甚至很少被解码为尿嘧啶。肌苷解码为腺苷和尿嘧啶是上下文依赖的。此外,质谱分析表明,肌苷会导致核糖体停滞,尤其是当密码子中存在多个肌苷时。事实上,来自人体组织的核糖体分析数据证实了体内依赖肌苷的核糖体停滞。据我们所知,这是首次以全面和无偏倚的方式测试肌苷的解码。因此,我们的研究表明肌苷在 mRNA 中具有新的、意料之外的功能,进一步扩展了编码潜力并影响了翻译效率。