Suppr超能文献

电子鼻中采用自适应主动学习的气体传感器漂移校正。

Gas-Sensor Drift Counteraction with Adaptive Active Learning for an Electronic Nose.

机构信息

School of Microelectronics and Communication Engineering, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing 400044, China.

出版信息

Sensors (Basel). 2018 Nov 19;18(11):4028. doi: 10.3390/s18114028.

Abstract

Gas sensors are the key components of an electronic nose (E-nose) in violated odour analysis. Gas-sensor drift is a kind of physical change on a sensor surface once an E-nose works. The perturbation of gas-sensor responses caused by drift would deteriorate the performance of the E-nose system over time. In this study, we intend to explore a suitable approach to deal with the drift effect in an online situation. Considering that the conventional drift calibration is difficult to implement online, we use active learning (AL) to provide reliable labels for online instances. Common AL learning methods tend to select and label instances with low confidence or massive information. Although this action clarifies the ambiguity near the classification boundary, it is inadequate under the influence of gas-sensor drift. We still need the samples away from the classification plane to represent drift variations comprehensively in the entire data space. Thus, a novel drift counteraction method named AL on adaptive confidence rule (AL-ACR) is proposed to deal with online drift data dynamically. By contrast with conventional AL methods selecting instances near the classification boundary of a certain category, AL-ACR collects instances distributed evenly in different categories. This action implements on an adjustable rule according to the outputs of classifiers. Compared with other reference methods, we adopt two drift databases of E-noses to evaluate the performance of the proposed method. The experimental results indicate that the AL-ACR reaches higher accuracy than references on two E-nose databases, respectively. Furthermore, the impact of the labelling number is discussed to show the trend of performance for the AL-type methods. Additionally, we define the labelling efficiency index (LEI) to assess the contribution of certain labelling numerically. According to the results of LEI, we believe AL-ACR can achieve the best effect with the lowest cost among the AL-type methods in this work.

摘要

气体传感器是电子鼻(E-nose)在异味分析中关键组件。一旦电子鼻工作,气体传感器漂移是传感器表面的一种物理变化。随着时间的推移,漂移引起的气体传感器响应的干扰会降低电子鼻系统的性能。在这项研究中,我们旨在探索一种合适的方法来处理在线情况下的漂移效应。考虑到传统的漂移校准难以在线实施,我们使用主动学习(AL)为在线实例提供可靠的标签。常见的 AL 学习方法倾向于选择和标记置信度低或信息量较大的实例。虽然这种行为可以澄清分类边界附近的模糊性,但在气体传感器漂移的影响下,这是不够的。我们仍然需要远离分类平面的样本,以在整个数据空间中全面表示漂移变化。因此,提出了一种名为自适应置信度规则的主动学习(AL-ACR)的新的漂移抵消方法,以动态处理在线漂移数据。与传统的 AL 方法选择某个类别分类边界附近的实例相比,AL-ACR 收集分布在不同类别中的实例。此操作根据分类器的输出根据自适应规则执行。与其他参考方法相比,我们采用两个电子鼻的漂移数据库来评估所提出方法的性能。实验结果表明,在两个电子鼻数据库上,AL-ACR 分别比参考方法达到更高的准确性。此外,讨论了标记数量的影响,以显示 AL 型方法的性能趋势。此外,我们定义了标记效率指数(LEI),以数值方式评估特定标记的贡献。根据 LEI 的结果,我们相信在这项工作中,AL-ACR 可以在 AL 型方法中以最低的成本达到最佳效果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验