文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

MEA 预处理和酶解预处理能源杨树生产氢气。

Hydrogen Production from Energy Poplar Preceded by MEA Pre-Treatment and Enzymatic Hydrolysis.

机构信息

Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12 Street, 80-233 Gdańsk, Poland.

Department of Molecular Biotechnology and Microbiology, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12 Street, 80-233 Gdańsk, Poland.

出版信息

Molecules. 2018 Nov 20;23(11):3029. doi: 10.3390/molecules23113029.


DOI:10.3390/molecules23113029
PMID:30463326
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6278490/
Abstract

The need to pre-treat lignocellulosic biomass prior to dark fermentation results primarily from the composition of lignocellulose because lignin hinders the processing of hard wood towards useful products. Hence, in this work a two-step approach for the pre-treatment of energy poplar, including alkaline pre-treatment and enzymatic saccharification followed by fermentation has been studied. Monoethanolamine (MEA) was used as the alkaline catalyst and diatomite immobilized bed enzymes were used during saccharification. The response surface methodology (RSM) method was used to determine the optimal alkaline pre-treatment conditions resulting in the highest values of both total released sugars (TRS) yield and degree of lignin removal. Three variable parameters (temperature, MEA concentration, time) were selected to optimize the alkaline pre-treatment conditions. The research was carried out using the Box-Behnken design. Additionally, the possibility of the re-use of both alkaline as well as enzymatic reagents was investigated. Obtained hydrolysates were subjected to dark fermentation in batch reactors performed by with a final result of 22.99 mL H₂/g energy poplar (0.6 mol H₂/mol TRS).

摘要

需要对木质纤维素生物质进行预处理,然后再进行黑暗发酵,这主要是由于木质纤维素的组成造成的,因为木质素阻碍了硬木向有用产品的加工。因此,在这项工作中,研究了一种两步法预处理能源杨树,包括碱性预处理和酶解糖化,然后进行发酵。单乙醇胺(MEA)用作碱性催化剂,硅藻土固定床酶用于糖化。响应面法(RSM)用于确定最佳的碱性预处理条件,以获得最高的总释放糖(TRS)产量和木质素去除程度。选择三个变量参数(温度、MEA 浓度、时间)来优化碱性预处理条件。研究采用 Box-Behnken 设计进行。此外,还研究了碱性试剂和酶试剂重复使用的可能性。得到的水解产物在分批式反应器中进行黑暗发酵,最终结果为 22.99 mL H₂/g 能源杨树(0.6 mol H₂/mol TRS)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/46fc/6278490/4be3b207c617/molecules-23-03029-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/46fc/6278490/b5d1c25ee5f4/molecules-23-03029-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/46fc/6278490/d9a12d2978e8/molecules-23-03029-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/46fc/6278490/0b3609877092/molecules-23-03029-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/46fc/6278490/f7d41977a140/molecules-23-03029-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/46fc/6278490/89ccb48cf05d/molecules-23-03029-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/46fc/6278490/90bea9c1a555/molecules-23-03029-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/46fc/6278490/e318ab3beb4d/molecules-23-03029-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/46fc/6278490/0de6f60088e7/molecules-23-03029-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/46fc/6278490/4be3b207c617/molecules-23-03029-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/46fc/6278490/b5d1c25ee5f4/molecules-23-03029-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/46fc/6278490/d9a12d2978e8/molecules-23-03029-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/46fc/6278490/0b3609877092/molecules-23-03029-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/46fc/6278490/f7d41977a140/molecules-23-03029-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/46fc/6278490/89ccb48cf05d/molecules-23-03029-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/46fc/6278490/90bea9c1a555/molecules-23-03029-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/46fc/6278490/e318ab3beb4d/molecules-23-03029-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/46fc/6278490/0de6f60088e7/molecules-23-03029-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/46fc/6278490/4be3b207c617/molecules-23-03029-g009.jpg

相似文献

[1]
Hydrogen Production from Energy Poplar Preceded by MEA Pre-Treatment and Enzymatic Hydrolysis.

Molecules. 2018-11-20

[2]
Pretreatment of hybrid poplar by aqueous ammonia.

Biotechnol Prog. 2009

[3]
Surface lignin change pertaining to the integrated process of dilute acid pre-extraction and mechanical refining of poplar wood chips and its impact on enzymatic hydrolysis.

Bioresour Technol. 2016-12-28

[4]
Efficient production of high concentration monosaccharides and ethanol from poplar wood after delignification and deacetylation.

Bioresour Technol. 2023-10

[5]
Effect of lignocellulosic composition and structure on the bioethanol production from different poplar lines.

Bioresour Technol. 2013-5-4

[6]
Enzymatic hydrolysis of aspen biomass into fermentable sugars by using lignocellulases from Armillaria gemina.

Bioresour Technol. 2013-1-30

[7]
Optimization of alkali-treated poplar fiber saccharification using metal ions and surfactants.

Bioengineered. 2021-12

[8]
Phenolic compounds: Strong inhibitors derived from lignocellulosic hydrolysate for 2,3-butanediol production by Enterobacter aerogenes.

Biotechnol J. 2015-12

[9]
Of enzyme use in cost-effective high solid simultaneous saccharification and fermentation processes.

J Biotechnol. 2018-2-8

[10]
Delignification of disposable wooden chopsticks waste for fermentative hydrogen production by an enriched culture from a hot spring.

J Environ Sci (China). 2014-6-1

引用本文的文献

[1]
Genome-Wide Analysis of the Gene Family in and Functional Analysis of in Root Growth and Amino Acid Transport.

Int J Mol Sci. 2022-12-30

[2]
Processing of Biomass Prior to Hydrogen Fermentation and Post-Fermentative Broth Management.

Molecules. 2022-11-7

[3]
Biodiesel Production From Lignocellulosic Biomass Using Oleaginous Microbes: Prospects for Integrated Biofuel Production.

Front Microbiol. 2021-8-12

本文引用的文献

[1]
Pretreatment of Lignocellulosic Materials as Substrates for Fermentation Processes.

Molecules. 2018-11-10

[2]
Furfural production from biomass pretreatment hydrolysate using vapor-releasing reactor system.

Bioresour Technol. 2018-1-2

[3]
Physico-chemical pretreatment and enzymatic hydrolysis of cotton stalk for ethanol production by Saccharomyces cerevisiae.

Bioresour Technol. 2017-7-23

[4]
Physico-Chemical Alternatives in Lignocellulosic Materials in Relation to the Kind of Component for Fermenting Purposes.

Materials (Basel). 2016-7-15

[5]
High sucrolytic activity by invertase immobilized onto magnetic diatomaceous earth nanoparticles.

Biotechnol Rep (Amst). 2017-4-6

[6]
Pretreatment of Lignocellulosic Biomass with Ionic Liquids and Ionic Liquid-Based Solvent Systems.

Molecules. 2017-3-20

[7]
Enzyme immobilization: an overview on techniques and support materials.

3 Biotech. 2013-2

[8]
Pretreatment of lignocellulose: Formation of inhibitory by-products and strategies for minimizing their effects.

Bioresour Technol. 2015-10-13

[9]
Inhibitory effects of furan derivatives and phenolic compounds on dark hydrogen fermentation.

Bioresour Technol. 2015-11

[10]
An overview of technologies for immobilization of enzymes and surface analysis techniques for immobilized enzymes.

Biotechnol Biotechnol Equip. 2015-3-4

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索