Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, UMR8226, Centre National de la Recherche Scientifique (CNRS), Institut de Biologie Physico-Chimique, Paris Sciences et Lettres (PSL) Research University, Sorbonne Université, F-75005 Paris, France.
Institute of Molecular and Cellular Radiobiology, Commissiriat à l'Énergie Atomique et aux Énergies Alternatives (CEA)/Direction de la Recherche Fondamentale (DRF), 92260 Fontenay-aux-Roses Cedex, France.
Genes Dev. 2018 Dec 1;32(23-24):1499-1513. doi: 10.1101/gad.318485.118. Epub 2018 Nov 21.
In cells lacking telomerase, telomeres gradually shorten during each cell division to reach a critically short length, permanently activate the DNA damage checkpoint, and trigger replicative senescence. The increase in genome instability that occurs as a consequence may contribute to the early steps of tumorigenesis. However, because of the low frequency of mutations and the heterogeneity of telomere-induced senescence, the timing and mechanisms of genome instability increase remain elusive. Here, to capture early mutation events during replicative senescence, we used a combined microfluidic-based approach and live-cell imaging in yeast. We analyzed DNA damage checkpoint activation in consecutive cell divisions of individual cell lineages in telomerase-negative yeast cells and observed that prolonged checkpoint arrests occurred frequently in telomerase-negative lineages. Cells relied on the adaptation to the DNA damage pathway to bypass the prolonged checkpoint arrests, allowing further cell divisions despite the presence of unrepaired DNA damage. We demonstrate that the adaptation pathway is a major contributor to the genome instability induced during replicative senescence. Therefore, adaptation plays a critical role in shaping the dynamics of genome instability during replicative senescence.
在缺乏端粒酶的细胞中,端粒在每次细胞分裂时逐渐缩短,达到临界短长度,永久激活 DNA 损伤检查点,并引发复制性衰老。由此产生的基因组不稳定性增加可能导致肿瘤发生的早期步骤。然而,由于突变的频率较低以及端粒诱导衰老的异质性,基因组不稳定性增加的时间和机制仍然难以捉摸。在这里,为了在复制性衰老过程中捕获早期突变事件,我们使用了一种组合的基于微流控的方法和酵母的活细胞成像。我们分析了端粒酶阴性酵母细胞中单个细胞谱系的连续细胞分裂中端粒酶的 DNA 损伤检查点激活情况,并观察到端粒酶阴性谱系中经常发生长时间的检查点阻滞。细胞依靠适应 DNA 损伤途径来绕过长时间的检查点阻滞,尽管存在未修复的 DNA 损伤,但仍允许进一步的细胞分裂。我们证明,适应途径是复制性衰老过程中诱导的基因组不稳定性的主要贡献者。因此,适应在塑造复制性衰老过程中基因组不稳定性的动态方面起着关键作用。