Suppr超能文献

一种针对 XII 因子(ALN-F12)的 RNAi 治疗药物的研究进展,用于遗传性血管性水肿的治疗。

An investigational RNAi therapeutic targeting Factor XII (ALN-F12) for the treatment of hereditary angioedema.

机构信息

Alnylam Pharmaceuticals, Cambridge, Massachusetts 02142, USA.

出版信息

RNA. 2019 Feb;25(2):255-263. doi: 10.1261/rna.068916.118. Epub 2018 Nov 21.

Abstract

Hereditary angioedema (HAE) is a genetic disorder mostly caused by mutations in the C1 esterase inhibitor gene (C1INH) that results in poor control of contact pathway activation and excess bradykinin generation. Bradykinin increases vascular permeability and is ultimately responsible for the episodes of swelling characteristic of HAE. We hypothesized that the use of RNA interference (RNAi) to reduce plasma Factor XII (FXII), which initiates the contact pathway signaling cascade, would reduce contact pathway activation and prevent excessive bradykinin generation. A subcutaneously administered GalNAc-conjugated small-interfering RNA (siRNA) targeting mRNA (ALN-F12) was developed, and potency was evaluated in mice, rats, and cynomolgus monkeys. The effect of FXII reduction by ALN-F12 administration was evaluated in two different vascular leakage mouse models. An ex vivo assay was developed to evaluate the correlation between human plasma FXII levels and high-molecular weight kininogen (HK) cleavage. A single subcutaneous dose of ALN-F12 led to potent, dose-dependent reduction of plasma FXII in mice, rats, and NHP. In cynomolgus monkeys, a single subcutaneous dose of ALN-F12 at 3 mg/kg resulted in >85% reduction of plasma FXII. Administration of ALN-F12 resulted in dose-dependent reduction of vascular permeability in two different mouse models of bradykinin-driven vascular leakage, demonstrating that RNAi-mediated reduction of FXII can potentially mitigate excess bradykinin stimulation. Lastly, ex vivo human plasma HK cleavage assay indicated FXII-dependent bradykinin generation. Together, these data suggest that RNAi-mediated knockdown of FXII by ALN-F12 is a potentially promising approach for the prophylactic treatment of HAE.

摘要

遗传性血管水肿(HAE)是一种遗传性疾病,主要由 C1 酯酶抑制剂基因(C1INH)的突变引起,导致接触途径激活失控和缓激肽生成过多。缓激肽增加血管通透性,最终导致 HAE 特征性的肿胀发作。我们假设使用 RNA 干扰(RNAi)来降低启动接触途径信号级联的血浆因子 XII(FXII),将减少接触途径激活并防止过度的缓激肽生成。开发了一种皮下给予的 GalNAc 缀合的针对 mRNA 的小干扰 RNA(siRNA)(ALN-F12),并在小鼠、大鼠和食蟹猴中评估了其效力。通过 ALN-F12 给药评估了 FXII 减少对两种不同血管渗漏小鼠模型的影响。开发了一种体外测定法来评估人血浆 FXII 水平与高分子量激肽原(HK)裂解之间的相关性。单次皮下给予 ALN-F12 可导致小鼠、大鼠和 NHP 血浆 FXII 产生强大的、剂量依赖性的降低。在食蟹猴中,单次皮下给予 3mg/kg 的 ALN-F12 可使血浆 FXII 降低>85%。ALN-F12 的给药导致两种不同的缓激肽驱动的血管渗漏小鼠模型中血管通透性呈剂量依赖性降低,表明 RNAi 介导的 FXII 降低可能潜在减轻过度的缓激肽刺激。最后,体外人血浆 HK 裂解测定表明 FXII 依赖性缓激肽生成。总之,这些数据表明,ALN-F12 通过 RNAi 介导的 FXII 敲低是预防治疗 HAE 的一种有前途的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0fd4/6348991/daf9beafe8f2/255f01.jpg

相似文献

1
An investigational RNAi therapeutic targeting Factor XII (ALN-F12) for the treatment of hereditary angioedema.
RNA. 2019 Feb;25(2):255-263. doi: 10.1261/rna.068916.118. Epub 2018 Nov 21.
2
Knockdown of liver-derived factor XII by GalNAc-siRNA ALN-F12 prevents thrombosis in mice without impacting hemostatic function.
Thromb Res. 2020 Dec;196:200-205. doi: 10.1016/j.thromres.2020.08.040. Epub 2020 Aug 28.
3
Plasmin is a natural trigger for bradykinin production in patients with hereditary angioedema with factor XII mutations.
J Allergy Clin Immunol. 2016 Nov;138(5):1414-1423.e9. doi: 10.1016/j.jaci.2016.02.021. Epub 2016 Apr 6.
4
A mechanism for hereditary angioedema with normal C1 inhibitor: an inhibitory regulatory role for the factor XII heavy chain.
Blood. 2019 Mar 7;133(10):1152-1163. doi: 10.1182/blood-2018-06-860270. Epub 2018 Dec 27.
5
Hereditary and acquired C1-inhibitor-dependent angioedema: from pathophysiology to treatment.
Ann Med. 2016;48(4):256-67. doi: 10.3109/07853890.2016.1162909. Epub 2016 Mar 26.
6
Hereditary angioedema with normal C1-INH with versus without specific F12 gene mutations.
Allergy. 2015 Aug;70(8):1004-12. doi: 10.1111/all.12648. Epub 2015 May 22.
7
Biochemistry, molecular genetics, and clinical aspects of hereditary angioedema with and without C1 inhibitor deficiency.
Allergol Int. 2023 Jul;72(3):375-384. doi: 10.1016/j.alit.2023.04.004. Epub 2023 May 9.
8
Current update on cellular and molecular mechanisms of hereditary angioedema.
Ann Allergy Asthma Immunol. 2014 May;112(5):413-8. doi: 10.1016/j.anai.2013.12.023. Epub 2014 Jan 29.
9
Pathogenic mechanisms of bradykinin mediated diseases: dysregulation of an innate inflammatory pathway.
Adv Immunol. 2014;121:41-89. doi: 10.1016/B978-0-12-800100-4.00002-7.
10
Impaired control of the contact system in hereditary angioedema with normal C1-inhibitor.
Allergy. 2020 Jun;75(6):1394-1403. doi: 10.1111/all.14160. Epub 2020 Feb 6.

引用本文的文献

1
Evaluating the oral delivery of GalNAc-conjugated siRNAs in rodents and non-human primates.
Nucleic Acids Res. 2024 Jun 10;52(10):5423-5437. doi: 10.1093/nar/gkae350.
2
Recent advances in the discovery and development of drugs targeting the kallikrein-kinin system.
J Transl Med. 2024 Apr 26;22(1):388. doi: 10.1186/s12967-024-05216-5.
3
Next generation anticoagulants: a spotlight on the potential role of activated factors XII and XI.
Expert Rev Hematol. 2023 Jul-Dec;16(10):711-714. doi: 10.1080/17474086.2023.2245973. Epub 2023 Aug 10.
4
Clinical manifestations of hereditary angioedema and a systematic review of treatment options.
Laryngoscope Investig Otolaryngol. 2021 Apr 3;6(3):394-403. doi: 10.1002/lio2.555. eCollection 2021 Jun.
5
Ligand conjugate SAR and enhanced delivery in NHP.
Mol Ther. 2021 Oct 6;29(10):2910-2919. doi: 10.1016/j.ymthe.2021.06.002. Epub 2021 Jun 4.
6
Leveraging Genetics for Hereditary Angioedema: A Road Map to Precision Medicine.
Clin Rev Allergy Immunol. 2021 Jun;60(3):416-428. doi: 10.1007/s12016-021-08836-7. Epub 2021 Jan 28.
7
Pathophysiology of Hereditary Angioedema (HAE) Beyond the SERPING1 Gene.
Clin Rev Allergy Immunol. 2021 Jun;60(3):305-315. doi: 10.1007/s12016-021-08835-8. Epub 2021 Jan 14.
8
Current and Prospective Targets of Pharmacologic Treatment of Hereditary Angioedema Types 1 and 2.
Clin Rev Allergy Immunol. 2021 Aug;61(1):66-76. doi: 10.1007/s12016-021-08832-x. Epub 2021 Jan 9.
10
Sustained depletion of FXIII-A by inducing acquired FXIII-B deficiency.
Blood. 2020 Dec 17;136(25):2946-2954. doi: 10.1182/blood.2020004976.

本文引用的文献

1
Advanced siRNA Designs Further Improve In Vivo Performance of GalNAc-siRNA Conjugates.
Mol Ther. 2018 Mar 7;26(3):708-717. doi: 10.1016/j.ymthe.2017.12.021. Epub 2018 Jan 4.
2
Factor XII and uPAR upregulate neutrophil functions to influence wound healing.
J Clin Invest. 2018 Mar 1;128(3):944-959. doi: 10.1172/JCI92880. Epub 2018 Jan 29.
3
Targeting of Antithrombin in Hemophilia A or B with RNAi Therapy.
N Engl J Med. 2017 Aug 31;377(9):819-828. doi: 10.1056/NEJMoa1616569. Epub 2017 Jul 10.
4
A Highly Durable RNAi Therapeutic Inhibitor of PCSK9.
N Engl J Med. 2017 May 4;376(18):e38. doi: 10.1056/NEJMc1703361.
5
Inhibiting Plasma Kallikrein for Hereditary Angioedema Prophylaxis.
N Engl J Med. 2017 Feb 23;376(8):717-728. doi: 10.1056/NEJMoa1605767.
6
Clinical Proof of Concept for a Novel Hepatocyte-Targeting GalNAc-siRNA Conjugate.
Mol Ther. 2017 Jan 4;25(1):71-78. doi: 10.1016/j.ymthe.2016.10.019.
7
A Highly Durable RNAi Therapeutic Inhibitor of PCSK9.
N Engl J Med. 2017 Jan 5;376(1):41-51. doi: 10.1056/NEJMoa1609243. Epub 2016 Nov 13.
8
Kininogen Cleavage Assay: Diagnostic Assistance for Kinin-Mediated Angioedema Conditions.
PLoS One. 2016 Sep 29;11(9):e0163958. doi: 10.1371/journal.pone.0163958. eCollection 2016.
9
Plasmin is a natural trigger for bradykinin production in patients with hereditary angioedema with factor XII mutations.
J Allergy Clin Immunol. 2016 Nov;138(5):1414-1423.e9. doi: 10.1016/j.jaci.2016.02.021. Epub 2016 Apr 6.
10
The Alzheimer's disease peptide β-amyloid promotes thrombin generation through activation of coagulation factor XII.
J Thromb Haemost. 2016 May;14(5):995-1007. doi: 10.1111/jth.13209. Epub 2016 Feb 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验