Department of Mechanical Engineering, University of California, Berkeley, CA, 94720, USA.
The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
Nat Commun. 2018 Nov 21;9(1):4907. doi: 10.1038/s41467-018-07361-0.
Individual luminescent nanoparticles enable thermometry with sub-diffraction limited spatial resolution, but potential self-heating effects from high single-particle excitation intensities remain largely uninvestigated because thermal models predict negligible self-heating. Here, we report that the common "ratiometric" thermometry signal of individual NaYF:Yb,Er nanoparticles unexpectedly increases with excitation intensity, implying a temperature rise over 50 K if interpreted as thermal. Luminescence lifetime thermometry, which we demonstrate for the first time using individual NaYF:Yb,Er nanoparticles, indicates a similar temperature rise. To resolve this apparent contradiction between model and experiment, we systematically vary the nanoparticle's thermal environment: the substrate thermal conductivity, nanoparticle-substrate contact resistance, and nanoparticle size. The apparent self-heating remains unchanged, demonstrating that this effect is an artifact, not a real temperature rise. Using rate equation modeling, we show that this artifact results from increased radiative and non-radiative relaxation from higher-lying Er energy levels. This study has important implications for single-particle thermometry.
单个发光纳米粒子能够以亚衍射极限的空间分辨率进行测温,但由于热模型预测自热效应可忽略不计,因此仍在很大程度上未对高单粒子激发强度下的潜在自热效应进行研究。在这里,我们报告说,单个 NaYF:Yb,Er 纳米粒子常见的“比率”测温信号出人意料地随激发强度增加,这意味着如果解释为热信号,则温度升高超过 50 K。我们首次使用单个 NaYF:Yb,Er 纳米粒子证明了荧光寿命测温法,结果表明温度也有类似的升高。为了解决模型与实验之间的这种明显矛盾,我们系统地改变了纳米粒子的热环境:衬底热导率、纳米粒子-衬底接触电阻和纳米粒子尺寸。表观自热保持不变,这表明这种效应是一种假象,而不是真正的温度升高。使用速率方程模型,我们表明这种假象是由于来自更高能级的 Er 能量的辐射和非辐射弛豫增加所致。这项研究对单粒子测温具有重要意义。