a Departamento de Química Inorgánica, Analítica y Química-Física and INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales , Universidad de Buenos Aires Ciudad Universitaria , Buenos Aires , Argentina.
b Departamento de Bioquímica , Universidad de la República , Montevideo , Uruguay.
Free Radic Res. 2019 Jan;53(1):18-25. doi: 10.1080/10715762.2018.1541322. Epub 2018 Nov 23.
Proteins are main targets of oxidants in biological systems. This oxidation may occur in the protein backbone as well as in certain amino acid side chains, depending on the oxidant and amino acid intrinsic reactivity. Moreover, many enzymes are capable of generating stable amino acid radicals, such as tyrosyl, tryptophanyl and cysteinyl radicals. These species react very rapidly (many times as diffusion-controlled reactions) with relevant cellular open-shell species such as nitric oxide (·NO) or molecular oxygen (O). The exception to this apparent rule is tyrosyl radical, that reacts at diffusion rates with ·NO, but shows very slow reactivity towards O (rate constant <10 M s). In this work, we provide a comparative molecular-level description of the reaction mechanisms involved in the reactions of tyrosyl, tryptophanyl and cysteinyl radicals towards ·NO and O, through quantum mechanics simulations which allow us to obtain relevant energetic and structural parameters, proposing a molecular explanation to this tyrosyl discrimination capability, namely, its marginal reactivity with O.
蛋白质是生物系统中氧化剂的主要靶标。这种氧化作用可能发生在蛋白质骨架上,也可能发生在某些氨基酸侧链上,这取决于氧化剂和氨基酸的固有反应性。此外,许多酶能够产生稳定的氨基酸自由基,如酪氨酸、色氨酸和半胱氨酸自由基。这些物种与相关的细胞开壳物种(如一氧化氮(·NO)或分子氧(O))反应非常迅速(许多次是扩散控制反应)。这个明显规则的例外是酪氨酸自由基,它与·NO 以扩散速率反应,但对 O 的反应性非常缓慢(速率常数<10 M s)。在这项工作中,我们通过量子力学模拟提供了对酪氨酸、色氨酸和半胱氨酸自由基与·NO 和 O 反应所涉及的反应机制的比较分子水平描述,这使我们能够获得相关的能量和结构参数,从而对这种酪氨酸区分能力提出分子解释,即其与 O 的边际反应性。