Suppr超能文献

根据非监督和监督化学计量学测试对西西里仙人掌(Opuntia Ficus-Indica L., CV. Muscaredda)进行产地鉴别。

Discrimination of the Sicilian Prickly Pear (Opuntia Ficus-Indica L., CV. Muscaredda) According to the Provenance by Testing Unsupervised and Supervised Chemometrics.

机构信息

Science4Life S.r.l, a spin-off of the Univ. of Messina, Messina, Italy.

Dipto di Scienze Biomediche, Odontoiatriche, e delle Immagini Morfologiche e Funzionali (BIOMORF), Univ. di Messina, Viale Annunziata, 98168, Messina, Italy.

出版信息

J Food Sci. 2018 Dec;83(12):2933-2942. doi: 10.1111/1750-3841.14382. Epub 2018 Nov 23.

Abstract

Different multivariate techniques were tested in an attempt to build up a statistical model for predicting the origin of prickly pears (Opuntia ficus-indica L., cv. Muscaredda) from several localities within the Sicilian region. Specifically, two areas known for producing fruits marked respectively by TAP (traditional agri-food product) and PDO (protected designation of origin) brands, and three sites producing non-branded fruits, were considered. A validated inductively coupled plasma mass spectrometry (ICP-MS) method allowed to obtain elemental fingerprints of prickly pears, which were subsequently elaborated by unsupervised tools, such as hierarchical clustering analysis (HCA) and principal component analysis (PCA), and supervised techniques, such as stepwise-canonical discriminant analysis (CDA) and partial least squares-discriminant analysis (PLS-DA). With the exception of HCA, which was not enough powerful to correctly cluster all selected samples, PCA successfully investigated the effect of subregional provenance on prickly pears, thus, differentiating labeled products from the non-labeled counterpart. Also, stepwise CDA and PLS-DA allowed to build up reliable models able to correctly classify 100% of fruits on the basis of the production areas, by exploiting a restricted pool of metals. Both statistical models, including unsupervised (PCA) and supervised techniques (stepwise CDA or PLS-DA), may guarantee the provenance of prickly pears protected by quality labels and safeguard producers and consumers. PRACTICAL APPLICATION: Based on elemental analysis and chemometrics, the reliable traceability models herein proposed, could be applied to commercial Sicilian prickly pears protected by TAP and PDO logos to guarantee their provenance and, at the same time, to safeguard producers and consumers.

摘要

不同的多元技术被测试,试图建立一个统计模型,用于预测来自西西里地区几个产地的仙人掌(Opuntia ficus-indica L.,cv. Muscaredda)的起源。具体来说,考虑了两个以生产分别带有 TAP(传统农业食品产品)和 PDO(受保护原产地名称)品牌的水果而闻名的地区,以及三个生产非品牌水果的地区。经过验证的电感耦合等离子体质谱(ICP-MS)方法可以获得仙人掌的元素指纹图谱,然后通过无监督工具(如层次聚类分析(HCA)和主成分分析(PCA))和监督技术(如逐步判别分析(CDA)和偏最小二乘判别分析(PLS-DA)进行处理。除了 HCA 不够强大,无法正确聚类所有选定的样本外,PCA 成功地研究了次区域起源对仙人掌的影响,从而区分了标记产品和非标记产品。此外,逐步 CDA 和 PLS-DA 允许建立可靠的模型,通过利用有限的金属池,根据生产区域正确分类 100%的水果。这两种统计模型,包括无监督(PCA)和监督技术(逐步 CDA 或 PLS-DA),都可以保证受质量标签保护的仙人掌的产地,并保障生产者和消费者的权益。

实际应用

基于元素分析和化学计量学,本文提出的可靠可追溯性模型可应用于受 TAP 和 PDO 徽标保护的商业西西里仙人掌,以保证其产地,并同时保障生产者和消费者的权益。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验