Univ Rennes, CNRS, IGDR - UMR6290, F-35000, Rennes, France.
Protein Sci. 2019 Mar;28(3):561-570. doi: 10.1002/pro.3557. Epub 2019 Jan 14.
Coiled-coil domain is a structural motif found in proteins crucial for achievement of central biological processes, such as cellular cohesion or neuro-transmission. The coiled-coil fold consists of alpha-helices bundle that can be repeated to form larger filament. Hydrophobic residues, distributed following a regular seven-residues' pattern, named heptad pattern, are commonly admitted to be essential for the formation and the stability of canonical coiled-coil repeats. Here we investigated the first three coiled-coil repeats (R1-R3) of the central domain of dystrophin, a scaffolding protein in muscle cells whose deficiency leads to Duchenne and Becker Muscular Dystrophies. By an atomic description of the hydrophobic interactions, we highlighted (i) that coiled-coil filament conformational changes are associated to specific patterns of inter-helices hydrophobic contacts, (ii) that inter-repeat hydrophobic interactions determine the behavior of linker regions including filament kinks, and (iii) that a non-strict conservation of the heptad patterns is leading to a relative plasticity of the dystrophin coiled-coil repeats. These structural features and modulations of the coiled-coil fold could better explain the mechanical properties of the central domain of dystrophin. This contribution to the understanding of the structure-function relationship of dystrophin, and especially of the R1-R3 fragment frequently used in the design of protein for gene therapies, should help in the improvement of the strategies for the cure of muscular dystrophies.
卷曲螺旋结构域是一种存在于蛋白质中的结构基序,对于实现细胞黏附和神经传递等重要的生物学过程至关重要。卷曲螺旋折叠由α-螺旋束组成,可以重复形成更大的细丝。疏水残基按照规则的七残基模式分布,称为七肽模式,通常被认为是形成和稳定典型卷曲螺旋重复的必要条件。在这里,我们研究了肌营养不良蛋白中央结构域的前三个卷曲螺旋重复(R1-R3),肌营养不良蛋白是肌肉细胞中的支架蛋白,其缺乏会导致杜氏肌营养不良症和贝克肌营养不良症。通过对疏水相互作用的原子描述,我们强调了:(i)卷曲螺旋丝构象变化与特定的螺旋间疏水接触模式相关,(ii)重复间的疏水相互作用决定了连接区的行为,包括丝的扭曲,(iii)七肽模式的非严格保守导致肌营养不良蛋白卷曲螺旋重复的相对灵活性。这些结构特征和卷曲螺旋折叠的调节可以更好地解释肌营养不良蛋白中央结构域的机械性能。这一对于肌营养不良蛋白结构-功能关系的理解的贡献,特别是对于在基因治疗中经常使用的蛋白质设计中常用的 R1-R3 片段的理解,应该有助于改善治疗肌营养不良症的策略。