Suppr超能文献

X射线计算机断层扫描中编码孔径的快速优化

Fast optimization of coded apertures in X-ray computed tomography.

作者信息

Mao Tianyi, Cuadros Angela P, Ma Xu, He Weiji, Chen Qian, Arce Gonzalo R

出版信息

Opt Express. 2018 Sep 17;26(19):24461-24478. doi: 10.1364/OE.26.024461.

Abstract

Coded aperture X-ray computed tomography (CAXCT) is a novel X-ray imaging system capable of reconstructing high quality images from a reduced set of measurements. Coded apertures are placed in front of the X-ray source in CAXCT so as to obtain patterned projections onto a detector array. Then, compressive sensing (CS) reconstruction algorithms are used to reconstruct the linear attenuation coefficients. The coded aperture is an important factor that influences the point spread function (PSF), which in turn determines the capability to sample the linear attenuation coefficients of the object. A coded aperture optimization approach was recently proposed based on the coherence of the system matrix; however, this algorithm is memory intensive and it is not able to optimize the coded apertures for large image sizes required in many applications. This paper introduces a significantly more efficient approach for coded aperture optimization that reduces the memory requirements and the execution time by orders of magnitude. The features are defined as the inner product of the vectors representing the geometric paths of the X-rays with the sparse basis representation of the object; therefore, the algorithm aims to find a subset of features that minimizes the information loss compared to the complete set of projections. This subset corresponds to the unblocking elements in the optimized coded apertures. The proposed approach solves the memory and runtime limitations of the previously proposed algorithm and provides a significant gain in the reconstruction image quality compared to that attained by random coded apertures in both simulated datasets and real datasets.

摘要

编码孔径X射线计算机断层扫描(CAXCT)是一种新型的X射线成像系统,能够从减少的测量数据集中重建高质量图像。在CAXCT中,编码孔径放置在X射线源前方,以便在探测器阵列上获得图案化投影。然后,使用压缩感知(CS)重建算法来重建线性衰减系数。编码孔径是影响点扩散函数(PSF)的一个重要因素,而点扩散函数又决定了对物体线性衰减系数进行采样的能力。最近基于系统矩阵的相干性提出了一种编码孔径优化方法;然而,该算法内存需求大,并且无法针对许多应用所需的大图像尺寸优化编码孔径。本文介绍了一种效率显著更高的编码孔径优化方法,该方法将内存需求和执行时间减少了几个数量级。这些特征被定义为表示X射线几何路径的向量与物体的稀疏基表示的内积;因此,该算法旨在找到一个特征子集,与完整投影集相比,该子集能使信息损失最小化。这个子集对应于优化编码孔径中的无阻元素。所提出的方法解决了先前算法的内存和运行时限制,并且与在模拟数据集和真实数据集中通过随机编码孔径获得的重建图像质量相比,在重建图像质量上有显著提高。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验