Suppr超能文献

用于基于X射线自由电子激光进行粗粒度建模的高斯混合模型。

Gaussian mixture model for coarse-grained modeling from XFEL.

作者信息

Nagai Tetsuro, Mochizuki Yuki, Joti Yasumasa, Tama Florence, Miyashita Osamu

出版信息

Opt Express. 2018 Oct 1;26(20):26734-26749. doi: 10.1364/OE.26.026734.

Abstract

We explore the advantage of Gaussian mixture model (GMM) for interpretation of single particle diffraction patterns from X-ray free electron laser (XFEL) experiments. GMM approximates a biomolecular shape by the superposition of Gaussian distributions. As the Fourier transformation of GMM can be quickly performed, we can efficiently simulate XFEL diffraction patterns from approximated structure models. We report that the resolution that GMM can accurately reproduce is proportional to the cubic root of the number of Gaussians used in the modeling. This behavior can be attributed to the correspondence between the number of adjustable parameters in GMM and the amount of sampling points in diffraction space. Furthermore, GMMs can successfully be used to perform angular assignment and to detect conformational variation. These results demonstrate that GMMs serve as useful coarse-grained models for hybrid approach in XFEL single particle experiments.

摘要

我们探讨了高斯混合模型(GMM)在解释X射线自由电子激光(XFEL)实验中的单粒子衍射图样方面的优势。GMM通过高斯分布的叠加来近似生物分子的形状。由于GMM的傅里叶变换可以快速进行,我们能够从近似的结构模型有效地模拟XFEL衍射图样。我们报告称,GMM能够准确再现的分辨率与建模中使用的高斯数量的立方根成正比。这种行为可归因于GMM中可调参数的数量与衍射空间中采样点数量之间的对应关系。此外,GMM可以成功地用于进行角度分配和检测构象变化。这些结果表明,GMM在XFEL单粒子实验中作为混合方法的有用粗粒度模型发挥着作用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验