Hirooka Toshihiko, Hirata Ryoya, Wang Jianping, Yoshida Masato, Nakazawa Masataka
Opt Express. 2018 Oct 15;26(21):27221-27236. doi: 10.1364/OE.26.027221.
We describe a single-channel 10.2 Tbit/s online transmission using non-coherent ultrashort optical Nyquist pulses. A 10.2 Tbit/s signal was generated at a symbol rate of as fast as 2.56 Tbaud with a polarization-multiplexed DQPSK format. We developed a new ultrafast optical sampler for Nyquist OTDM demultiplexing with a nonlinear optical loop mirror, an RZ-CW conversion technique to improve the SNR, and an active stabilization technique providing stable long-term demultiplexing operation. With precise higher-order dispersion compensation up to fourth order, a 10.2 Tbit/s signal was transmitted over 300 km for the first time as a real-time demonstration with a spectral efficiency of 2.5 bit/s/Hz. We also report a 10.2 Tbit/s transmission over 225 km with a spectral efficiency of 3.7 bit/s/Hz, which we realized by reducing the roll-off factor to zero.