Sun Zhanwen, To Suet, Yu K M
Opt Express. 2018 Oct 15;26(21):28161-28177. doi: 10.1364/OE.26.028161.
Hybrid micro-optics of infrared (IR) materials are of great advantage in realizing the function integration and minimization of advanced IR optical systems. However, due to the hard-and-brittle nature of IR materials, it is still challenging for both non-mechanical and mechanical technologies to achieve one-step generation of hybrid infrared micro-optics with high form accuracy. In the present study, a flexible method, namely ultra-precision side milling (UPSM), is first introduced to achieve one-step generation of infrared hybrid micro-optics in ductile mode, and the corresponding reflective diffraction characteristics are analyzed. In UPSM, the reflective/refractive primary surface of the hybrid micro-optics is formed via the removal of workpiece material, and the high-frequent secondary diffractive micro/nanostructures are simultaneously generated by the tool residual marks of cutting trajectories. With the consideration of the changing curvature of the primary surface, the optimal toolpath generation strategy is introduced to acquire the desired shapes of the secondary micro/nanostructures, and the selecting criteria of the machining parameters is discussed to avoid the brittle fractures of IR materials. In practice, two types of hybrid micro-optic components, namely hybrid micro-aspheric arrays and sinusoid grid surface with high-frequent secondary unidirectional phase gratings, are successfully fabricated on single-crystal silicon to validate the proposed method. The method adopted in this study is very promising for the deterministic fabrication of hybrid micro-optics on infrared materials.
红外(IR)材料的混合微光学器件在实现先进红外光学系统的功能集成和小型化方面具有巨大优势。然而,由于红外材料硬脆的特性,对于非机械和机械技术而言,实现具有高形状精度的混合红外微光学器件的一步成型仍然具有挑战性。在本研究中,首次引入了一种灵活的方法,即超精密侧铣削(UPSM),以在延性模式下实现红外混合微光学器件的一步成型,并分析了相应的反射衍射特性。在超精密侧铣削中,混合微光学器件的反射/折射主表面通过去除工件材料形成,而高频二次衍射微/纳米结构则由切削轨迹的刀具残留痕迹同时产生。考虑到主表面曲率的变化,引入了最佳刀具路径生成策略以获取所需形状的二次微/纳米结构,并讨论了加工参数的选择标准以避免红外材料的脆性断裂。在实际应用中,在单晶硅上成功制造了两种混合微光学元件,即混合微非球面阵列和具有高频二次单向相位光栅的正弦网格表面,以验证所提出的方法。本研究采用的方法对于在红外材料上确定性制造混合微光学器件非常有前景。