Suppr超能文献

Limiting efficiency of indoor silicon photovoltaic devices.

作者信息

Bahrami-Yekta Vahid, Tiedje Thomas

出版信息

Opt Express. 2018 Oct 29;26(22):28238-28248. doi: 10.1364/OE.26.028238.

Abstract

Energy harvesting from ambient light can be used to power wireless sensors and other standalone electronic devices. The intensity of light used for illumination is 300-3000x lower than sunlight and the spectrum of artificial light is normally narrowly concentrated in the visible range. As a result, the optimal design of photovoltaic devices for energy harvesting from ambient light differs from conventional solar cells. We calculate the maximum efficiency for Si photovoltaic devices operating under conditions expected indoors as a function of the cell thickness, taking into account the relevant properties of Si. The optimum thickness for devices operating under 250 lux illumination produced by white LED's is 1.8 µm and the efficiency is 29.0%, whereas for direct sunlight, the optimum thickness is much larger at 109 µm, while the maximum efficiency is almost the same (29.7%). The relative efficiency increases logarithmically with light intensity at 8.5% per decade.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验