College of Environmental Science and Engineering, North China Electric Power University, Beijing, China.
The Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, NL, Canada.
Adv Mar Biol. 2018;81:129-165. doi: 10.1016/bs.amb.2018.09.004. Epub 2018 Nov 7.
In this study, the hexachlorobenzene molecule was modified by three-dimensional quantitative structure-activity relationship (3D-QSAR) models and a full factor experimental design to obtain new hexachlorobenzene molecules with low migration ability. The 3D-QSAR models (comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA)) were constructed by SYBLY-X 2.0 software, using experimental data of octanol-air partition coefficients (K) for 12 chlorobenzenes (CBs) congeners as the dependent variable, and the structural parameters of CBs as independent variables, respectively. A target molecule (hexachlorobenzene; HCB: its long-distance migration capability leads to pollution of the marine environment in Antarctic and Arctic) was modified using the 3D-QSAR contour maps associated with resolution V of the 2 full-factorial experimental design method, and 11 modified HCB molecules were produced with a single chlorine atom (-Cl) and three chlorine atoms (-Cl, -Cl, and -Cl) replaced with electropositive groups (-COOH, -CN, -CF, -COF, -NO, -F, -CHF, -ONO, and -SiF) to increase the logK. The new molecules had essentially similar biological enrichment functions and toxicities as HCB but were found to be more easily degraded. A 2D-QSAR model and molecular docking technology indicated that both dipole moments and highest occupied orbital energies of the substituents markedly affected migration and degradation of the new molecules. The abilities of the compounds to undergo long distance migration were assessed. The modified HCB molecules (i.e. 2-CN-HCB, 2-CF-HCB, 1-F-3-COOH-5-NO-HCB, 1-NO-3-CN-5-CHF-HCB and 1-CN-3-F-5-NO-HCB) moved from a long-range transport potential of the modified molecules to a relatively low mobility class, and the transport potentials of the remaining modified HCB molecules (i.e. 2-COOH-HCB, 2-COF-HCB, 1-COF-3-ONO-5-NO2-HCB, 1-F-3-CN-5-SiF-HCB, 1-F-3-COOH-5-SiF-HCB and 1-CN-3-SiF-5-ONO-HCB) also significantly decreased. These results provide a basic theoretical basis for designing environmentally benign molecules based on HCB.
在这项研究中,通过三维定量构效关系(3D-QSAR)模型和全因子实验设计对六氯苯分子进行了修饰,得到了具有低迁移能力的新型六氯苯分子。3D-QSAR 模型(比较分子场分析(CoMFA)和比较分子相似性指数分析(CoMSIA))由 SYBLY-X 2.0 软件构建,使用 12 种氯苯(CBs)同系物的辛醇-空气分配系数(K)的实验数据作为因变量,分别以 CBs 的结构参数作为自变量。利用 3D-QSAR 等高线图和分辨率 V 的全因子实验设计方法对目标分子(六氯苯;HCB:其长距离迁移能力导致南极和北极的海洋环境受到污染)进行了修饰,生成了 11 种带有一个氯原子(-Cl)和三个氯原子(-Cl、-Cl 和 -Cl)的取代基的改性 HCB 分子,取代基为正电性基团(-COOH、-CN、-CF、-COF、-NO、-F、-CHF、-ONO 和 -SiF),以增加 logK。新分子与 HCB 具有基本相似的生物富集功能和毒性,但发现更容易降解。二维定量构效关系模型和分子对接技术表明,取代基的偶极矩和最高占据轨道能量显著影响新分子的迁移和降解。评估了化合物进行长距离迁移的能力。修饰后的 HCB 分子(即 2-CN-HCB、2-CF-HCB、1-F-3-COOH-5-NO-HCB、1-NO-3-CN-5-CHF-HCB 和 1-CN-3-F-5-NO-HCB)从修饰分子的长程迁移潜力转移到相对低迁移能力的类别,而其余修饰 HCB 分子(即 2-COOH-HCB、2-COF-HCB、1-COF-3-ONO-5-NO2-HCB、1-F-3-CN-5-SiF-HCB、1-F-3-COOH-5-SiF-HCB 和 1-CN-3-SiF-5-ONO-HCB)的迁移潜力也显著降低。这些结果为基于 HCB 设计环境友好分子提供了基本的理论依据。