Suppr超能文献

转录组和生理分析揭示了耐旱和易感西瓜基因型的耐旱适应策略。

Transcriptomic and physiological analyses reveal drought adaptation strategies in drought-tolerant and -susceptible watermelon genotypes.

机构信息

State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China.

Yangtze Normal University, Fuling 408000, Chongqing, China.

出版信息

Plant Sci. 2019 Jan;278:32-43. doi: 10.1016/j.plantsci.2018.10.016. Epub 2018 Oct 23.

Abstract

Drought stress has become one of the most urgent environmental hazards for horticultural crops. In this research, we analyzed watermelon adaptation strategies to drought stress in drought-tolerant (M20) and -susceptible (Y34) genotypes via transcriptomic and physiological analyses. After drought stress, a total of 6228 and 4311 differentially expressed genes (DEGs) were observed in Y34 and M20, respectively. Numerous DEGs were involved in various defense responses such as antioxidation, protein protection, osmotic adjustment, wax accumulation, hormone signaling, and melatonin biosynthesis. Accordingly, the contents of ABA, melatonin, wax, and some osmoprotectants were increased by drought stress in both Y34 and especially M20. Exogenous application of melatonin or ABA induced wax accumulation and drought tolerance and melatonin may function upstream of ABA. In comparison to Y34, M20 was more able to activate ABA signaling, melatonin biosynthesis, osmotic adjustment, antioxidation, and wax accumulation under drought stress. These stronger responses confer M20 tolerance to drought. Photosynthesis and most DEGs involved in photosynthesis and cell growth were decreased by drought stress in both M20 and especially Y34. For drought-susceptible genotypes, growth retardation may be an important mechanism for saving and redistributing resources in order to reprogram stress signaling networks.

摘要

干旱胁迫已成为园艺作物最紧迫的环境危害之一。在这项研究中,我们通过转录组学和生理学分析,分析了耐旱(M20)和易感(Y34)基因型西瓜对干旱胁迫的适应策略。在干旱胁迫后,Y34 和 M20 中分别观察到了 6228 和 4311 个差异表达基因(DEGs)。大量的 DEGs 参与了各种防御反应,如抗氧化、蛋白质保护、渗透调节、蜡质积累、激素信号和褪黑素生物合成。因此,ABA、褪黑素、蜡质和一些渗透调节剂的含量在 Y34 和尤其是 M20 中都因干旱胁迫而增加。外源施用褪黑素或 ABA 诱导了蜡质积累和耐旱性,且褪黑素可能在 ABA 信号上游发挥作用。与 Y34 相比,M20 在干旱胁迫下更能激活 ABA 信号、褪黑素生物合成、渗透调节、抗氧化和蜡质积累。这些更强的反应赋予了 M20 对干旱的耐受性。光合作用和大多数参与光合作用和细胞生长的 DEGs 在 M20 和特别是 Y34 中都因干旱胁迫而减少。对于干旱敏感的基因型,生长迟缓可能是一种重要的机制,用于节省和重新分配资源,以重新编程应激信号网络。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验