Suppr超能文献

采用数据科学方法从抑郁症状预测可卡因使用频率。

Using a data science approach to predict cocaine use frequency from depressive symptoms.

机构信息

Department of Psychiatry and Behavioral Sciences, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth), 1941 East Road, Houston, TX, United States.

Department of Psychiatry and Behavioral Sciences, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth), 1941 East Road, Houston, TX, United States; UTHealth Harris County Psychiatric Center, Houston, TX, United States.

出版信息

Drug Alcohol Depend. 2019 Jan 1;194:310-317. doi: 10.1016/j.drugalcdep.2018.10.029. Epub 2018 Nov 15.

Abstract

BACKGROUND

Depressive symptoms may contribute to cocaine use. However, tests of the relationship between depression and severity of cocaine use have produced mixed results, possibly due to heterogeneity in individual symptoms of depression. Our goal was to establish which symptoms of depression are most strongly related to frequency of cocaine use (one aspect of severity) in a large sample of current cocaine users. We utilized generalized additive modeling to provide data-driven exploration of the relationships between depressive symptoms and cocaine use, including examination of non-linearity. We hypothesized that symptoms related to anhedonia would demonstrate the strongest relationship to cocaine use.

METHOD

772 individuals screened for cocaine use disorder treatment studies. To measure depressive symptoms, we used the items of the Beck Depression Inventory, 2nd Edition. Cocaine use frequency was measured as proportion of self-reported days of cocaine use over the last 30 days using the Addiction Severity Index.

RESULTS

Models identified 18 significant predictors of past-30-day cocaine use. The strongest predictors were Crying, Pessimism, Changes in Appetite, Indecisiveness, and Loss of Interest. Noteworthy effect sizes were found for specific response options on Suicidal Thoughts, Worthlessness, Agitation, Concentration Difficulty, Tiredness, and Self Dislike items.

CONCLUSIONS

The strongest predictors did not conform to previously hypothesized "subtypes" of depression. Non-linear relationships between items and use were typical, suggesting BDI-II items may not be monotonically increasing ordinal measures with respect to predicting cocaine use. Qualitative analysis of strongly predictive response options suggested emotional volatility and disregard for the future as important predictors of use.

摘要

背景

抑郁症状可能会导致可卡因的使用。然而,测试抑郁与可卡因使用严重程度之间的关系产生了混合的结果,这可能是由于抑郁的个体症状存在异质性。我们的目标是在大量当前可卡因使用者的样本中确定哪些抑郁症状与可卡因使用频率(严重程度的一个方面)关系最密切。我们利用广义加性模型(generalized additive modeling)来提供对抑郁症状与可卡因使用之间关系的数据分析探索,包括对非线性关系的检验。我们假设与快感缺乏相关的症状与可卡因使用的关系最强。

方法

772 名筛查可卡因使用障碍治疗研究的个体。为了测量抑郁症状,我们使用了贝克抑郁量表第二版的项目。可卡因使用频率是通过自我报告的过去 30 天可卡因使用天数的比例来衡量的,使用成瘾严重程度指数(Addiction Severity Index)。

结果

模型确定了过去 30 天可卡因使用的 18 个显著预测因子。最强的预测因子是哭泣、悲观、食欲变化、犹豫不决和兴趣丧失。在自杀想法、无价值感、烦躁不安、注意力困难、疲倦和自我厌恶等特定反应选项上发现了显著的效应量。

结论

最强的预测因子不符合先前假设的抑郁“亚型”。项目与使用之间的非线性关系是典型的,这表明 BDI-II 项目可能不是预测可卡因使用的单调递增有序测量。对强预测反应选项的定性分析表明,情绪不稳定和对未来的不关注是使用的重要预测因素。

相似文献

5
Measuring depressive symptoms during adolescence: what is the role of gender?青少年期抑郁症状的测量:性别扮演什么角色?
Epidemiol Psychiatr Sci. 2019 Feb;28(1):66-76. doi: 10.1017/S2045796017000312. Epub 2017 Jun 28.

引用本文的文献

1
Altered integrated and segregated states in cocaine use disorder.可卡因使用障碍中整合与分离状态的改变。
Front Neurosci. 2025 Apr 9;19:1572463. doi: 10.3389/fnins.2025.1572463. eCollection 2025.
2
Deficits in consummatory reward relate to severity of cocaine use. consummatory reward 与可卡因使用的严重程度有关。
Drug Alcohol Depend. 2023 Aug 1;249:109950. doi: 10.1016/j.drugalcdep.2023.109950. Epub 2023 Jun 1.

本文引用的文献

3
Sex differences in anxiety and depression clinical perspectives.焦虑和抑郁中的性别差异:临床视角
Front Neuroendocrinol. 2014 Aug;35(3):320-30. doi: 10.1016/j.yfrne.2014.05.004. Epub 2014 Jun 2.
7
Reconsidering anhedonia in depression: lessons from translational neuroscience.重新思考抑郁症中的快感缺失:转化神经科学的启示。
Neurosci Biobehav Rev. 2011 Jan;35(3):537-55. doi: 10.1016/j.neubiorev.2010.06.006. Epub 2010 Jul 11.
8
Dissecting components of reward: 'liking', 'wanting', and learning.剖析奖赏的组成部分:“喜好”“渴望”与学习。
Curr Opin Pharmacol. 2009 Feb;9(1):65-73. doi: 10.1016/j.coph.2008.12.014. Epub 2009 Jan 21.
10

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验