Suppr超能文献

基于 QSTR 和 i-QSTTR 方法的药物生态毒理学建模、排序和优先级划分:二维和基于片段描述符的应用。

Ecotoxicological Modeling, Ranking and Prioritization of Pharmaceuticals Using QSTR and i-QSTTR Approaches: Application of 2D and Fragment Based Descriptors.

机构信息

Drug Theoretics and Cheminformatics Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India.

Interdisciplinary Center for Nanotoxicity, Department of Chemistry, Physics and Atmospheric Sciences, Jackson State University, Jackson, MS-39217, USA.

出版信息

Mol Inform. 2019 Aug;38(8-9):e1800078. doi: 10.1002/minf.201800078. Epub 2018 Nov 25.

Abstract

There is a huge lack of experimental data on ecotoxicity of pharmaceuticals, while existing resources are insufficient to gather these data against all possible environmental endpoints. Computational tools such as quantitative structure-toxicity relationship (QSTR) can help us to a great extent to overcome this problem through filling of data gaps. In the current study, QSTR models have been developed for toxicity of 260 diverse pharmaceuticals on three different trophic level species namely algae, daphnia and fish, using partial least squares (PLS) regression approach with 2D descriptors selected through a genetic algorithm approach in order to study underlying chemical features responsible for the observed acute toxicity. The final obtained statistically reliable QSTR models were extensively validated following the OECD guidelines. Interspecies quantitative structure-toxicity-toxicity (QSTTR) models were also developed using genetic algorithm followed by multiple linear regression (GA-MLR) approach to check for the pattern of responses observed as we move across the hierarchy of genetics in different taxonomical class. The obtained interspecies models were finally utilized to fill the data gaps for 260 pharmaceuticals, where experimental data were missing for at least one of the endpoints. Finally, a prioritized list for 7106 existing drug like substances was prepared by predicting their acute toxicity using developed QSTR models.

摘要

目前关于药品的生态毒性的实验数据非常缺乏,而现有的资源还不足以针对所有可能的环境终点来收集这些数据。计算工具,如定量构效关系(QSTR),可以通过填补数据空白在很大程度上帮助我们解决这个问题。在本研究中,我们使用偏最小二乘法(PLS)回归方法,结合通过遗传算法选择的 2D 描述符,针对藻类、水蚤和鱼类这三种不同营养级别的物种,开发了 260 种不同药品毒性的 QSTR 模型,以研究导致观察到的急性毒性的潜在化学特征。根据 OECD 指南,我们对最终获得的统计上可靠的 QSTR 模型进行了广泛验证。我们还使用遗传算法(GA)和多元线性回归(MLR)方法开发了种间定量结构-毒性-毒性(QSTTR)模型,以检查在不同分类学类别的遗传层次结构中观察到的响应模式。获得的种间模型最终用于填补 260 种药品的空白数据,这些药品的至少一个终点缺乏实验数据。最后,通过使用开发的 QSTR 模型预测现有 7106 种类似药物物质的急性毒性,为其制定了优先列表。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验