Département d'ophtalmologie et d'ORL-CCF, Faculté de médecine, Université Laval, Québec, QC, Canada; Centre de recherche du CHU de Québec-UL, Axe médecine régénératrice, Québec, QC, Canada; Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Québec, QC, Canada.
Département d'ophtalmologie et d'ORL-CCF, Faculté de médecine, Université Laval, Québec, QC, Canada; Centre de recherche du CHU de Québec-UL, Axe médecine régénératrice, Québec, QC, Canada; Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Québec, QC, Canada; Centre de recherche sur le cancer de l'Université Laval, Québec, QC, Canada.
Acta Biomater. 2019 Jan 15;84:305-316. doi: 10.1016/j.actbio.2018.11.033. Epub 2018 Nov 23.
The choroid of the eye is a vascularized and pigmented connective tissue lying between the retina and the sclera. Increasing evidence demonstrates that, beyond supplying nutrients to the outer retina, the different choroidal cells contribute to the retina's homeostasis, especially by paracrine signaling. However, the precise role of each cell type is currently unclear. Here, we developed a choroidal substitute using the self-assembly approach of tissue engineering. Retinal pigment epithelial (RPE) cells, as well as choroidal stromal fibroblasts, vascular endothelial cells and melanocytes, were isolated from human eye bank donor eyes. Fibroblasts were cultured in a medium containing serum and ascorbic acid. After six weeks, cells formed sheets of extracellular matrix (ECM), which were stacked to produce a tissue-engineered choroidal stroma (TECS). These stromal substitutes were then characterized and compared to the native choroid. Their ECM composition (collagens and proteoglycans) and biomechanical properties (ultimate tensile strength, strain and elasticity) were similar. Furthermore, RPE cells, human umbilical vein endothelial cells and choroidal melanocytes successfully repopulated the stromas. Physiological structures were established, such as a confluent monolayer of RPE cells, vascular-like structures and a pigmentation of the stroma. Our TECS thus recaptured the biophysical environment of the native choroid, and can serve as study models to understand the normal interactions between the RPE and choroidal cells, as well as their reciprocal exchanges with the ECM. This will consequently pave the way to derive accurate insight in the pathophysiological mechanisms of diseases affecting the choroid. STATEMENT OF SIGNIFICANCE: The choroid is traditionally known for supplying blood to the avascular outer retina. There has been a renewed attention directed towards the choroid partly due to its implication in the development of age-related macular degeneration (AMD), the leading cause of blindness in industrialized countries. Since AMD involves the dysfunction of the choroid/retinal pigment epithelium (RPE) complex, a three-dimensional (3D) model of RPE comprising the choroid layer is warranted. We used human choroidal cells to engineer a choroidal substitute. Our approach takes advantage of the ability of cells to recreate their own environment, without exogenous materials. Our model could help to better understand the role of each choroidal cell type as well as to advance the development of new therapeutics for AMD.
眼睛的脉络膜是一种位于视网膜和巩膜之间的富含血管和色素的结缔组织。越来越多的证据表明,除了为外视网膜提供营养外,不同的脉络膜细胞还通过旁分泌信号为视网膜的内稳态做出贡献。然而,目前每种细胞类型的确切作用尚不清楚。在这里,我们使用组织工程的自组装方法开发了一种脉络膜替代物。从人眼库供体眼中分离出视网膜色素上皮(RPE)细胞以及脉络膜基质成纤维细胞、血管内皮细胞和黑素细胞。成纤维细胞在含有血清和抗坏血酸的培养基中培养。六周后,细胞形成细胞外基质(ECM)片层,然后将其堆叠以产生组织工程化的脉络膜基质(TECS)。然后对这些基质替代品进行了表征,并与天然脉络膜进行了比较。它们的 ECM 组成(胶原蛋白和糖胺聚糖)和生物力学特性(极限拉伸强度、应变和弹性)相似。此外,RPE 细胞、人脐静脉内皮细胞和脉络膜黑素细胞成功地再殖入基质中。建立了生理结构,例如 RPE 细胞的连续单层、类似血管的结构和基质的色素沉着。因此,我们的 TECS 再现了天然脉络膜的生物物理环境,可以作为研究模型来了解 RPE 和脉络膜细胞之间的正常相互作用,以及它们与 ECM 的相互交换。这将为深入了解影响脉络膜的病理生理机制提供依据。
脉络膜传统上以向无血管的外视网膜供血而闻名。由于脉络膜在年龄相关性黄斑变性(AMD)的发展中起作用,因此人们对其重新产生了兴趣,AMD 是工业化国家致盲的主要原因。由于 AMD 涉及脉络膜/视网膜色素上皮(RPE)复合物的功能障碍,因此需要包含脉络膜层的 RPE 三维(3D)模型。我们使用人脉络膜细胞来构建脉络膜替代物。我们的方法利用了细胞在没有外源性材料的情况下重新创造自身环境的能力。我们的模型可以帮助更好地了解每种脉络膜细胞类型的作用,并推进 AMD 新疗法的开发。