Suppr超能文献

ONECUT2 是一种可靶向的致命前列腺癌主调控因子,可抑制雄激素轴。

ONECUT2 is a targetable master regulator of lethal prostate cancer that suppresses the androgen axis.

机构信息

Division of Cancer Biology and Therapeutics, Departments of Surgery & Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA.

The Center for Bioinformatics and Functional Genomics, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA.

出版信息

Nat Med. 2018 Dec;24(12):1887-1898. doi: 10.1038/s41591-018-0241-1. Epub 2018 Nov 26.

Abstract

Treatment of prostate cancer (PC) by androgen suppression promotes the emergence of aggressive variants that are androgen receptor (AR) independent. Here we identify the transcription factor ONECUT2 (OC2) as a master regulator of AR networks in metastatic castration-resistant prostate cancer (mCRPC). OC2 acts as a survival factor in mCRPC models, suppresses the AR transcriptional program by direct regulation of AR target genes and the AR licensing factor FOXA1, and activates genes associated with neural differentiation and progression to lethal disease. OC2 appears active in a substantial subset of human prostate adenocarcinoma and neuroendocrine tumors. Inhibition of OC2 by a newly identified small molecule suppresses metastasis in mice. These findings suggest that OC2 displaces AR-dependent growth and survival mechanisms in many cases where AR remains expressed, but where its activity is bypassed. OC2 is also a potential drug target in the metastatic phase of aggressive PC.

摘要

雄激素抑制治疗前列腺癌 (PC) 会促进雄激素受体 (AR) 不依赖的侵袭性变体的出现。在这里,我们将转录因子 ONECUT2 (OC2) 鉴定为转移性去势抵抗性前列腺癌 (mCRPC) 中 AR 网络的主要调节因子。OC2 作为 mCRPC 模型中的存活因子,通过直接调节 AR 靶基因和 AR 许可因子 FOXA1 来抑制 AR 转录程序,并激活与神经分化和致命疾病进展相关的基因。OC2 似乎在大量人类前列腺腺癌和神经内分泌肿瘤中活跃。通过新鉴定的小分子抑制 OC2 可抑制小鼠的转移。这些发现表明,在 AR 仍然表达但活性被绕过的许多情况下,OC2 取代了 AR 依赖性的生长和存活机制。OC2 也是侵袭性 PC 转移阶段的一个潜在药物靶点。

相似文献

1
ONECUT2 is a targetable master regulator of lethal prostate cancer that suppresses the androgen axis.
Nat Med. 2018 Dec;24(12):1887-1898. doi: 10.1038/s41591-018-0241-1. Epub 2018 Nov 26.
4
ONECUT2 is a driver of neuroendocrine prostate cancer.
Nat Commun. 2019 Jan 17;10(1):278. doi: 10.1038/s41467-018-08133-6.
5
ErbB2 Signaling Increases Androgen Receptor Expression in Abiraterone-Resistant Prostate Cancer.
Clin Cancer Res. 2016 Jul 15;22(14):3672-82. doi: 10.1158/1078-0432.CCR-15-2309. Epub 2016 Mar 2.
7
Emerging Variants of Castration-Resistant Prostate Cancer.
Curr Oncol Rep. 2017 May;19(5):32. doi: 10.1007/s11912-017-0593-6.
8
Transdifferentiation as a Mechanism of Treatment Resistance in a Mouse Model of Castration-Resistant Prostate Cancer.
Cancer Discov. 2017 Jul;7(7):736-749. doi: 10.1158/2159-8290.CD-16-1174. Epub 2017 Apr 14.

引用本文的文献

1
New Insights into Potential Therapeutic Targets for Neuroendocrine Prostate Cancer: From Bench to Clinic.
Research (Wash D C). 2025 Jul 31;8:0791. doi: 10.34133/research.0791. eCollection 2025.
2
Identification of FANCG as a prognostic factor for prostate cancer.
Eur J Med Res. 2025 Jul 9;30(1):602. doi: 10.1186/s40001-025-02877-w.
3
Advancing therapeutics in small-cell lung cancer.
Nat Cancer. 2025 Jun 16. doi: 10.1038/s43018-025-00996-1.
5
Patterns of intra- and intertumor phenotypic heterogeneity in lethal prostate cancer.
J Clin Invest. 2025 Jun 10;135(15). doi: 10.1172/JCI186599. eCollection 2025 Aug 1.
7
Regulatory risk loci link disrupted androgen response to pathophysiology of Polycystic Ovary Syndrome.
medRxiv. 2025 Mar 27:2025.03.26.25324630. doi: 10.1101/2025.03.26.25324630.
8
Roles of PEG10 in cancer and neurodegenerative disorder (Review).
Oncol Rep. 2025 May;53(5). doi: 10.3892/or.2025.8893. Epub 2025 Apr 4.
9
ETV5 reduces androgen receptor expression and induces neural stem-like properties during neuroendocrine prostate cancer development.
Proc Natl Acad Sci U S A. 2025 Mar 25;122(12):e2420313122. doi: 10.1073/pnas.2420313122. Epub 2025 Mar 21.
10
Targeting the histone reader ZMYND8 inhibits antiandrogen-induced neuroendocrine tumor transdifferentiation of prostate cancer.
Nat Cancer. 2025 Apr;6(4):629-646. doi: 10.1038/s43018-025-00928-z. Epub 2025 Mar 18.

本文引用的文献

1
Aberrant Activation of a Gastrointestinal Transcriptional Circuit in Prostate Cancer Mediates Castration Resistance.
Cancer Cell. 2017 Dec 11;32(6):792-806.e7. doi: 10.1016/j.ccell.2017.10.008. Epub 2017 Nov 16.
2
Transdifferentiation as a Mechanism of Treatment Resistance in a Mouse Model of Castration-Resistant Prostate Cancer.
Cancer Discov. 2017 Jul;7(7):736-749. doi: 10.1158/2159-8290.CD-16-1174. Epub 2017 Apr 14.
3
FOXA1 inhibits prostate cancer neuroendocrine differentiation.
Oncogene. 2017 Jul 13;36(28):4072-4080. doi: 10.1038/onc.2017.50. Epub 2017 Mar 20.
5
Modulation of long noncoding RNAs by risk SNPs underlying genetic predispositions to prostate cancer.
Nat Genet. 2016 Oct;48(10):1142-50. doi: 10.1038/ng.3637. Epub 2016 Aug 15.
6
Integrated Classification of Prostate Cancer Reveals a Novel Luminal Subtype with Poor Outcome.
Cancer Res. 2016 Sep 1;76(17):4948-58. doi: 10.1158/0008-5472.CAN-16-0902. Epub 2016 Jun 14.
7
deepTools2: a next generation web server for deep-sequencing data analysis.
Nucleic Acids Res. 2016 Jul 8;44(W1):W160-5. doi: 10.1093/nar/gkw257. Epub 2016 Apr 13.
9
Divergent clonal evolution of castration-resistant neuroendocrine prostate cancer.
Nat Med. 2016 Mar;22(3):298-305. doi: 10.1038/nm.4045. Epub 2016 Feb 8.
10
The Molecular Signatures Database (MSigDB) hallmark gene set collection.
Cell Syst. 2015 Dec 23;1(6):417-425. doi: 10.1016/j.cels.2015.12.004.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验