Suppr超能文献

负折射率共形表面等离子体超材料中二次谐波产生的反向相位匹配

Backward Phase Matching for Second Harmonic Generation in Negative-Index Conformal Surface Plasmonic Metamaterials.

作者信息

Liu Liangliang, Wu Lin, Zhang Jingjing, Li Zhuo, Zhang Baile, Luo Yu

机构信息

School of Electrical and Electronic Engineering Nanyang Technological University Nanyang Avenue 639798 Singapore.

The Research Center of Applied Electromagnetics School of Electronic and Information Engineering Nanjing University of Information Science and Technology Nanjing 210044 China.

出版信息

Adv Sci (Weinh). 2018 Aug 31;5(11):1800661. doi: 10.1002/advs.201800661. eCollection 2018 Nov.

Abstract

Backward phase matching, which describes counterpropagating fundamental and harmonic waves in a negative-index medium, is one of the most intriguing phenomena in nonlinear metamaterials. Predicted theoretically decades ago, however, it is still a challenging task to be applied for efficient second harmonic (SH) generation in a nonlinear metamaterial with ultrathin geometry and ultralow loss. Here, a negative-index spoof plasmonic metamaterial is reported, which is composed of an ultrathin symmetrical corrugated metallic strips loaded with nonlinear active devices. The simulated and measured power spectra and surface near-field distributions show that a peak SH signal can be generated at the backward phase-matched frequency point in a 120° curved surface with high efficiency, thanks to the ultrathin flexible geometry, significant confinement effect, and large propagation length of the spoof surface plasmons. The results open new technological challenges from nano- and micro-nonlinear photonics to science and engineering of compact, broadband, and efficient frequency-mixing metamaterials and electromagnetic devices.

摘要

反向相位匹配描述了负折射率介质中反向传播的基波和谐波,是非线性超材料中最引人入胜的现象之一。尽管几十年前就已在理论上得到预测,但要将其应用于具有超薄几何结构和超低损耗的非线性超材料中以实现高效二次谐波(SH)产生,仍然是一项具有挑战性的任务。在此,报道了一种负折射率类表面等离子体超材料,它由加载非线性有源器件的超薄对称波纹金属条组成。模拟和测量的功率谱以及表面近场分布表明,由于类表面等离子体的超薄柔性几何结构、显著的限制效应和较大的传播长度,在120°曲面的反向相位匹配频率点处可以高效地产生SH信号峰值。这些结果为从纳米和微非线性光子学到紧凑、宽带和高效频率混合超材料及电磁器件的科学与工程带来了新的技术挑战。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2198/6247027/21df6f11606d/ADVS-5-1800661-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验