Mayerhöfer Thomas G, Popp Jürgen
Spectroscopy/Imaging, Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, Germany.
Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University, Jena D-, 07743, Helmholtzweg 4, Germany.
Chemphyschem. 2019 Jan 7;20(1):31-36. doi: 10.1002/cphc.201800961. Epub 2018 Dec 5.
We present the theoretical basis for a profound upgrade of the method of absorbance band fitting ("band deconvolution"), which requires only minute changes in the code of corresponding spectrometer software. This upgrade is based on a (re-)connection of the damped harmonic oscillator model ("Lorentz oscillator") and the Lorentz profile used for band fitting. Based on this reconnection, we provide a proper extension to multiple oscillators. As a result, band fitting allows directly obtaining all oscillator parameters with very good accuracy, at least for the not too strong oscillators present in organic and biological matter. Accordingly, this could be the initial spark to open the way to a long-awaited paradigm shift in infrared spectroscopy: Away from a mere oscillator position-based, towards an also intensity-based quantitative interpretation of spectra. As an extra, absorbance band fitting ("Poor Man's Dispersion Analysis"), allows to obtain the index of refraction function in one go.
我们提出了吸光度带拟合方法(“带反卷积”)深度升级的理论基础,该升级仅需对相应光谱仪软件的代码进行微小改动。此升级基于阻尼谐振子模型(“洛伦兹振子”)与用于带拟合的洛伦兹分布之间的(重新)关联。基于这种重新关联,我们对多个振子进行了适当扩展。结果,带拟合能够以非常高的精度直接获得所有振子参数,至少对于有机和生物物质中不太强的振子是这样。因此,这可能成为开启红外光谱学期待已久的范式转变之路的最初火花:从仅基于振子位置的定性分析,转向基于强度的光谱定量解释。此外,吸光度带拟合(“穷人的色散分析”)能够一次性获得折射率函数。