J Phys Chem B. 2018 Dec 20;122(50):11969-11977. doi: 10.1021/acs.jpcb.8b09676. Epub 2018 Dec 6.
Variability in gene expression causes genetically identical cells to exhibit different phenotypes. One probable cause of this variability is transcriptional bursting, where the synthesis of RNA molecules randomly alternates with periods of silence in the transfer of genetic information. Yet, the molecular mechanisms behind this variability remain unclear. Experiments indicate that multiple biochemical states might be involved in the production of RNA molecules. Stimulated by these observations, we developed a theoretical framework to investigate the mechanisms of transcriptional bursting. It is based on a multistate stochastic approach that provides a full quantitative description of the dynamic properties in the system. We found that the degree of stochastic fluctuations during transcription directly correlates with the number of biochemical states. This explains experimentally observed variability and fluctuations in the quantities of the produced RNA molecules. The procedure to estimate the number of relevant biochemical states participating in the transcription is outlined and applied for analysis of experimental results. We also developed a general dynamic phase diagram for the transcription process. The presented theoretical method clarifies physical-chemical aspects of the transcriptional bursting and presents a minimal chemical-kinetic description of the process.
基因表达的可变性导致基因相同的细胞表现出不同的表型。这种可变性的一个可能原因是转录爆发,其中 RNA 分子的合成随机地与遗传信息传递的沉默期交替。然而,这种可变性背后的分子机制仍不清楚。实验表明,多个生化状态可能参与 RNA 分子的生成。受这些观察结果的启发,我们开发了一个理论框架来研究转录爆发的机制。它基于一种多态随机方法,为系统的动态特性提供了完整的定量描述。我们发现,转录过程中随机波动的程度与生化状态的数量直接相关。这解释了实验中观察到的 RNA 分子产生的可变性和波动。概述了用于估计参与转录的相关生化状态数量的步骤,并将其应用于实验结果的分析。我们还为转录过程开发了一个通用的动态相图。所提出的理论方法阐明了转录爆发的物理化学方面,并提出了该过程的最小化学动力学描述。