Laboratory of Microbiology and Biochemistry, College of Chemistry and Food Engineering, Federal University of Rio Grande, Rio Grande, RS, Brazil.
Laboratory of Biochemical Engineering, College of Chemistry and Food Engineering, Federal University of Rio Grande, Rio Grande, RS, Brazil.
Bioresour Technol. 2019 Feb;273:592-598. doi: 10.1016/j.biortech.2018.11.054. Epub 2018 Nov 14.
The aim of this study was to develop nanofibers containing nanoparticles with potential for the biological fixation of CO together with the microalgae Chlorella fusca LEB 111. An electrospinning technique was used for the production of polymeric nanofibers with different concentrations of iron oxide nanoparticles: 0, 2, 4, 6, 8, and 10% (w v). Nanofibers with a nanoparticle concentration of 4% (w v) were selected for use in the microalgal cultivation due to their smaller diameter (434 nm), high specific surface area (13.8 m g) and higher CO adsorption capacity (164.2 mg g). The microalgae C. fusca LEB 111 presented a higher CO biofixation rate of 216.2 mg L d when cultivated with these nanofibers. The results demonstrated the potential of electrospun nanofibers as physical adsorbents of CO since they can increase the contact time between the gas and the microorganism and consequently increase the CO biofixation by the microalgae.
本研究旨在开发含有纳米颗粒的纳米纤维,这些纳米颗粒具有将 CO 进行生物固定的潜力,同时还可以培养小球藻(Chlorella fusca LEB 111)。采用静电纺丝技术制备了不同浓度氧化铁纳米颗粒(0、2、4、6、8 和 10%(w/v))的聚合物纳米纤维。由于直径较小(434nm)、比表面积较大(13.8m²/g)和 CO 吸附能力较高(164.2mg/g),纳米纤维中纳米颗粒浓度为 4%(w/v)时,被选为用于微藻培养。在这些纳米纤维的作用下,小球藻(LEB 111)的 CO 生物固定率达到了 216.2mg/L/d。结果表明,静电纺纳米纤维具有作为 CO 的物理吸附剂的潜力,因为它们可以增加气体与微生物之间的接触时间,从而提高微藻对 CO 的生物固定能力。
Bioresour Technol. 2018-11-14
Bioresour Technol. 2020-11-28
Int J Biol Macromol. 2020-5-15
Bioresour Technol. 2017-3-12
Sci Total Environ. 2017-2-4
Bioresour Technol. 2018-12-24
Bioresour Technol. 2016-4-19
Nanomaterials (Basel). 2022-5-4
World J Microbiol Biotechnol. 2019-5-13