Suppr超能文献

使用语音声学识别失语症成年人的情感状态变化。

Identification of Affective State Change in Adults With Aphasia Using Speech Acoustics.

机构信息

School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta.

Communication Disorders Program, Georgia State University, Atlanta.

出版信息

J Speech Lang Hear Res. 2018 Dec 10;61(12):2906-2916. doi: 10.1044/2018_JSLHR-S-17-0057.

Abstract

PURPOSE

The current study aimed to identify objective acoustic measures related to affective state change in the speech of adults with post-stroke aphasia.

METHOD

The speech of 20 post-stroke adults with aphasia was recorded during picture description and administration of the Western Aphasia Battery-Revised (Kertesz, 2006). In addition, participants completed the Self-Assessment Manikin (Bradley & Lang, 1994) and the Stress Scale (Tobii Dynavox, 1981-2016) before and after the language tasks. Speech from each participant was used to detect a change in affective state test scores between the beginning and ending speech.

RESULTS

Machine learning revealed moderate success in classifying depression, minimal success in predicting depression and stress numeric scores, and minimal success in classifying changes in affective state class between the beginning and ending speech.

CONCLUSIONS

The results suggest the existence of objectively measurable aspects of speech that may be used to identify changes in acute affect from adults with aphasia. This work is exploratory and hypothesis-generating; more work will be needed to make conclusive claims. Further work in this area could lead to automated tools to assist clinicians with their diagnoses of stress, depression, and other forms of affect in adults with aphasia.

摘要

目的

本研究旨在识别与脑卒中后失语症成人言语中情感状态变化相关的客观声学测量指标。

方法

20 名脑卒中后失语症成人在进行图片描述和 Western Aphasia Battery-Revised(Kertesz,2006)测试时,其言语被记录下来。此外,参与者在语言任务前后完成了自我评估情绪量表(Bradley & Lang,1994)和应激量表(Tobii Dynavox,1981-2016)。每个参与者的演讲都用于检测演讲开始和结束时情感状态测试分数的变化。

结果

机器学习在抑郁分类方面取得了中等程度的成功,在预测抑郁和应激数值得分方面取得了较小的成功,在分类开始和结束时言语中情感状态类别变化方面取得了较小的成功。

结论

结果表明,言语中可能存在可客观测量的方面,可以用来识别失语症成人的急性情感变化。这项工作是探索性的和产生假说的;需要更多的工作来做出明确的结论。该领域的进一步工作可能会导致自动化工具的出现,以帮助临床医生诊断失语症成人的应激、抑郁和其他形式的情感障碍。

相似文献

1
Identification of Affective State Change in Adults With Aphasia Using Speech Acoustics.
J Speech Lang Hear Res. 2018 Dec 10;61(12):2906-2916. doi: 10.1044/2018_JSLHR-S-17-0057.
2
Affective speech prosody perception and production in stroke patients with left-hemispheric damage and healthy controls.
Brain Lang. 2017 Mar;166:19-28. doi: 10.1016/j.bandl.2016.12.001. Epub 2016 Dec 23.
3
Inner Speech's Relationship With Overt Speech in Poststroke Aphasia.
J Speech Lang Hear Res. 2017 Sep 18;60(9):2406-2415. doi: 10.1044/2017_JSLHR-S-16-0270.
4
Psychological distress after stroke and aphasia: the first six months.
Clin Rehabil. 2010 Feb;24(2):181-90. doi: 10.1177/0269215509346090.
5
A Case Study Using a Multimodal Approach to Melodic Intonation Therapy.
Am J Speech Lang Pathol. 2018 Nov 21;27(4):1352-1362. doi: 10.1044/2018_AJSLP-17-0030.
7
Counselling training for speech-language therapists working with people affected by post-stroke aphasia: a systematic review.
Int J Lang Commun Disord. 2019 May;54(3):321-346. doi: 10.1111/1460-6984.12455. Epub 2019 Feb 13.
8
Modifying and Validating a Measure of Chronic Stress for People With Aphasia.
J Speech Lang Hear Res. 2018 Dec 10;61(12):2934-2949. doi: 10.1044/2018_JSLHR-L-18-0173.
9
Clinical Outcomes Following Language-Specific Attention Treatment Versus Direct Attention Training for Aphasia: A Comparative Effectiveness Study.
J Speech Lang Hear Res. 2019 Aug 15;62(8):2785-2811. doi: 10.1044/2019_JSLHR-L-18-0504. Epub 2019 Jul 25.
10
The Nature of Error Consistency in Individuals With Acquired Apraxia of Speech and Aphasia.
Am J Speech Lang Pathol. 2017 Jun 22;26(2S):611-630. doi: 10.1044/2017_AJSLP-16-0080.

引用本文的文献

1
Measuring depression severity based on facial expression and body movement using deep convolutional neural network.
Front Psychiatry. 2022 Dec 21;13:1017064. doi: 10.3389/fpsyt.2022.1017064. eCollection 2022.
2
Spectrum of neuropsychiatric symptoms in chronic post-stroke aphasia.
World J Psychiatry. 2022 Mar 19;12(3):450-469. doi: 10.5498/wjp.v12.i3.450.
3
An evaluation of cleaning practices at a teaching hospital.
Am J Infect Control. 2021 Jan;49(1):40-43. doi: 10.1016/j.ajic.2020.06.187. Epub 2020 Jun 26.

本文引用的文献

2
A tutorial on variable selection for clinical prediction models: feature selection methods in data mining could improve the results.
J Clin Epidemiol. 2016 Mar;71:76-85. doi: 10.1016/j.jclinepi.2015.10.002. Epub 2015 Oct 22.
3
Aphasia severity and salivary cortisol over time.
J Clin Exp Neuropsychol. 2012;34(5):489-96. doi: 10.1080/13803395.2012.658356. Epub 2012 Feb 22.
4
The relevance of emotional and psychosocial factors in aphasia to rehabilitation.
Neuropsychol Rehabil. 2003 Jan-Mar;13(1-2):109-32. doi: 10.1080/09602010244000291.
5
Detection of clinical depression in adolescents' speech during family interactions.
IEEE Trans Biomed Eng. 2011 Mar;58(3):574-86. doi: 10.1109/TBME.2010.2091640. Epub 2010 Nov 11.
6
Depression in acute stroke: prevalence, dominant symptoms and associated factors. A systematic literature review.
Disabil Rehabil. 2011;33(7):539-56. doi: 10.3109/09638288.2010.505997. Epub 2010 Aug 7.
7
A survey of affect recognition methods: audio, visual, and spontaneous expressions.
IEEE Trans Pattern Anal Mach Intell. 2009 Jan;31(1):39-58. doi: 10.1109/TPAMI.2008.52.
8
Critical analysis of the impact of glottal features in the classification of clinical depression in speech.
IEEE Trans Biomed Eng. 2008 Jan;55(1):96-107. doi: 10.1109/TBME.2007.900562.
10
Comparing objective feature statistics of speech for classifying clinical depression.
Conf Proc IEEE Eng Med Biol Soc. 2004;2006:17-20. doi: 10.1109/IEMBS.2004.1403079.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验