Centre for Neural Circuits and Behaviour, University of Oxford, Oxford, UK.
Department of Mathematics, University of California Los Angeles, Los Angeles, CA, USA.
Nat Neurosci. 2018 Dec;21(12):1774-1783. doi: 10.1038/s41593-018-0276-0. Epub 2018 Nov 26.
Motor cortex (M1) exhibits a rich repertoire of neuronal activities to support the generation of complex movements. Although recent neuronal-network models capture many qualitative aspects of M1 dynamics, they can generate only a few distinct movements. Additionally, it is unclear how M1 efficiently controls movements over a wide range of shapes and speeds. We demonstrate that modulation of neuronal input-output gains in recurrent neuronal-network models with a fixed architecture can dramatically reorganize neuronal activity and thus downstream muscle outputs. Consistent with the observation of diffuse neuromodulatory projections to M1, a relatively small number of modulatory control units provide sufficient flexibility to adjust high-dimensional network activity using a simple reward-based learning rule. Furthermore, it is possible to assemble novel movements from previously learned primitives, and one can separately change movement speed while preserving movement shape. Our results provide a new perspective on the role of modulatory systems in controlling recurrent cortical activity.
运动皮层(M1)表现出丰富的神经元活动组合,以支持复杂运动的产生。尽管最近的神经元网络模型捕捉到了 M1 动力学的许多定性方面,但它们只能产生少数几种不同的运动。此外,目前尚不清楚 M1 如何高效地控制各种形状和速度的运动。我们证明,在具有固定结构的递归神经元网络模型中,神经元输入-输出增益的调制可以显著重组神经元活动,从而影响下游肌肉输出。与向 M1 弥散性神经调质投射的观察结果一致,相对较少的调制控制单元提供了足够的灵活性,可使用简单的基于奖励的学习规则来调整高维网络活动。此外,人们可以从之前学习的基元组装新的运动,并且可以在保持运动形状的同时分别改变运动速度。我们的研究结果为调制系统在控制皮层的递归活动中的作用提供了新的视角。