Division of Physical and Health Education, Graduate School of Education, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
PLoS Comput Biol. 2012;8(6):e1002590. doi: 10.1371/journal.pcbi.1002590. Epub 2012 Jun 28.
Recent theoretical studies have proposed that the redundant motor system in humans achieves well-organized stereotypical movements by minimizing motor effort cost and motor error. However, it is unclear how this optimization process is implemented in the brain, presumably because conventional schemes have assumed a priori that the brain somehow constructs the optimal motor command, and largely ignored the underlying trial-by-trial learning process. In contrast, recent studies focusing on the trial-by-trial modification of motor commands based on error information suggested that forgetting (i.e., memory decay), which is usually considered as an inconvenient factor in motor learning, plays an important role in minimizing the motor effort cost. Here, we examine whether trial-by-trial error-feedback learning with slight forgetting could minimize the motor effort and error in a highly redundant neural network for sensorimotor transformation and whether it could predict the stereotypical activation patterns observed in primary motor cortex (M1) neurons. First, using a simple linear neural network model, we theoretically demonstrated that: 1) this algorithm consistently leads the neural network to converge at a unique optimal state; 2) the biomechanical properties of the musculoskeletal system necessarily determine the distribution of the preferred directions (PD; the direction in which the neuron is maximally active) of M1 neurons; and 3) the bias of the PDs is steadily formed during the minimization of the motor effort. Furthermore, using a non-linear network model with realistic musculoskeletal data, we demonstrated numerically that this algorithm could consistently reproduce the PD distribution observed in various motor tasks, including two-dimensional isometric torque production, two-dimensional reaching, and even three-dimensional reaching tasks. These results may suggest that slight forgetting in the sensorimotor transformation network is responsible for solving the redundancy problem in motor control.
最近的理论研究表明,人类冗余的运动系统通过最小化运动努力成本和运动误差来实现组织良好的刻板运动。然而,目前尚不清楚这一优化过程是如何在大脑中实现的,这可能是因为传统的方案假设大脑以某种方式构建最优的运动指令,而在很大程度上忽略了潜在的逐次试验学习过程。相比之下,最近的研究集中在基于误差信息的逐次修改运动指令上,这些研究表明,遗忘(即记忆衰减)通常被认为是运动学习中的一个不便因素,但它在最小化运动努力成本方面起着重要作用。在这里,我们研究了在高度冗余的感觉运动转换神经网络中,是否可以通过轻微的遗忘来实现逐次试验的误差反馈学习,从而最小化运动努力和误差,以及它是否可以预测初级运动皮层(M1)神经元中观察到的刻板激活模式。首先,我们使用一个简单的线性神经网络模型,从理论上证明了:1)该算法能使神经网络始终收敛到唯一的最优状态;2)骨骼肌肉系统的生物力学特性必然决定了 M1 神经元的最佳方向(PD;神经元最活跃的方向)分布;3)PD 的偏差在运动努力的最小化过程中稳定形成。此外,我们使用具有现实骨骼肌肉数据的非线性网络模型进行数值模拟,结果表明该算法能够始终如一地再现各种运动任务(包括二维等长转矩产生、二维伸展和甚至三维伸展任务)中观察到的 PD 分布。这些结果可能表明,感觉运动转换网络中的轻微遗忘负责解决运动控制中的冗余问题。