Parastesh Fatemeh, Rajagopal Karthikeyan, Karthikeyan Anitha, Alsaedi Ahmed, Hayat Tasawar, Pham Viet-Thanh
1Biomedical Engineering Department, Amirkabir University of Technology, Tehran, 15875-4413 Iran.
Center for Nonlinear Dynamics, College of Engineering, Defence University, Bishoftu, Ethiopia.
Cogn Neurodyn. 2018 Dec;12(6):607-614. doi: 10.1007/s11571-018-9497-x. Epub 2018 Jul 14.
The last two decades have seen many literatures on the mathematical and computational analysis of neuronal activities resulting in many mathematical models to describe neuron. Many of those models have described the membrane potential of a neuron in terms of the leakage current and the synaptic inputs. Only recently researchers have proposed a new neuron model based on the electromagnetic induction theorem, which considers inner magnetic fluctuation and external electromagnetic radiation as a significant missing part that can participate in neural activity. While the flux coupling of the membrane is considered equivalent to a memductance function of a memristor, standard memductance model of has been used in the literatures, but in this paper we propose a new memductance function based on discontinuous flux coupling. Various dynamical properties of the neuron model with discontinuous flux coupling are studied and interestingly the proposed model shows hyperchaotic behavior which was not identified in the literatures. Furthermore, we consider a ring network of the proposed model and investigate whether the chimera state can emerge. The chimera state relates to the state with simultaneously coherence and incoherence in oscillatory networks and has received much attention in recent years.
在过去二十年里,出现了许多关于神经元活动数学和计算分析的文献,从而产生了许多用于描述神经元的数学模型。其中许多模型根据漏电流和突触输入来描述神经元的膜电位。直到最近,研究人员才基于电磁感应定理提出了一种新的神经元模型,该模型将内部磁波动和外部电磁辐射视为可参与神经活动的重要缺失部分。虽然膜的通量耦合被认为等同于忆阻器的忆导函数,但文献中使用的是标准忆导模型,而在本文中,我们基于不连续通量耦合提出了一种新的忆导函数。研究了具有不连续通量耦合的神经元模型的各种动力学特性,有趣的是,所提出的模型表现出超混沌行为,这在文献中尚未被发现。此外,我们考虑了所提出模型的环形网络,并研究是否会出现奇异态。奇异态与振荡网络中同时存在相干和不相干的状态有关,近年来受到了广泛关注。