Suppr超能文献

海曼-罗斯神经元模型中的确定性和随机性分岔。

Deterministic and stochastic bifurcations in the Hindmarsh-Rose neuronal model.

机构信息

Laboratory of Mechanics and Materials, Department of Physics, Faculty of Science, University of Yaoundé I, Box 812, Yaoundé, Cameroon.

出版信息

Chaos. 2013 Sep;23(3):033125. doi: 10.1063/1.4818545.

Abstract

We analyze the bifurcations occurring in the 3D Hindmarsh-Rose neuronal model with and without random signal. When under a sufficient stimulus, the neuron activity takes place; we observe various types of bifurcations that lead to chaotic transitions. Beside the equilibrium solutions and their stability, we also investigate the deterministic bifurcation. It appears that the neuronal activity consists of chaotic transitions between two periodic phases called bursting and spiking solutions. The stochastic bifurcation, defined as a sudden change in character of a stochastic attractor when the bifurcation parameter of the system passes through a critical value, or under certain condition as the collision of a stochastic attractor with a stochastic saddle, occurs when a random Gaussian signal is added. Our study reveals two kinds of stochastic bifurcation: the phenomenological bifurcation (P-bifurcations) and the dynamical bifurcation (D-bifurcations). The asymptotical method is used to analyze phenomenological bifurcation. We find that the neuronal activity of spiking and bursting chaos remains for finite values of the noise intensity.

摘要

我们分析了存在和不存在随机信号的 3D Hindmarsh-Rose 神经元模型中发生的分岔。当受到足够的刺激时,神经元活动发生;我们观察到各种类型的分岔,导致混沌转变。除了平衡解及其稳定性外,我们还研究了确定性分岔。似乎神经元活动由两种周期性相之间的混沌转变组成,称为爆发和尖峰解。随机分岔定义为当系统的分岔参数通过临界值时,或者在随机吸引子与随机鞍点碰撞的某些条件下,随机吸引子的特征突然发生变化,当添加随机高斯信号时,就会发生这种情况。我们的研究揭示了两种随机分岔:现象分岔(P-分岔)和动力分岔(D-分岔)。渐近方法用于分析现象分岔。我们发现,在噪声强度的有限值下,尖峰和爆发混沌的神经元活动仍然存在。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验