文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

通过整合全基因组基因表达谱分析鉴定类风湿关节炎和骨关节炎鉴别诊断的潜在生物标志物。

Identification of potential biomarkers for differential diagnosis between rheumatoid arthritis and osteoarthritis via integrative genome‑wide gene expression profiling analysis.

机构信息

School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases of The National Health and Family Planning Commission, Xi'an, Shaanxi 710061, P.R. China.

School of Public Health, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, P.R. China.

出版信息

Mol Med Rep. 2019 Jan;19(1):30-40. doi: 10.3892/mmr.2018.9677. Epub 2018 Nov 20.


DOI:10.3892/mmr.2018.9677
PMID:30483789
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6297798/
Abstract

The present study aimed to identify potential novel biomarkers in synovial tissue obtained from patients with Rheumatoid Arthritis (RA) and Osteoarthritis (OA) for differential diagnosis. The genome‑wide expression profiling datasets of synovial tissues from RA and OA cohorts, including GSE55235, GSE55457 and GSE55584 datasets, were retrieved and used to identify differentially expressed genes (DEGs; P<0.05; false discovery rate <0.05 and Fold Change >2) between RA and OA using R software. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses of DEGs were performed to determine molecular and biochemical pathways associated with the identified DEGs, and a protein‑protein interaction (PPI) network of the DEGs was constructed using Cytoscape software. Significant modules in the PPI network and candidate driver genes were screened using the Molecular Complex Detection Algorithm. Potential biomarkers were evaluated by receiver operating characteristic and logistic regression analyses. Large numbers of DEGs were detected, including 273, 205 and 179 DEGs in the GSE55235, GSE55457 and GSE55584 datasets, respectively. Among them, 80 DEGs exhibited identical expression trends in all the three datasets, including 49 upregulated and 31 downregulated genes in patients with RA. DEGs in patients suffering from RA compared with patients suffering from OA were predominantly associated with the primary immunodeficiency pathway, including interleukin 7 receptor (IL7R) and signal transducer activator of transcription 1 (STAT1). The sensitivity of IL7R + STAT1 to differentiate RA from OA was 93.94% with a specificity of 80.77%. The results generated from analyses of the GSE36700 dataset were closely associated with results generated from analyses of GSE55235, GSE55457 and GSE55584 datasets, which further verified the reliability of the aforementioned results. The results of the present study suggested that increased expression of IL7R and STAT1 in synovial tissue as well as in the primary immunodeficiency may be associated with RA occurrence. These identified novel biomarkers may be used to predict disease occurrence and clinically differentiate RA from OA.

摘要

本研究旨在鉴定类风湿关节炎(RA)和骨关节炎(OA)患者滑膜组织中的潜在新型生物标志物,用于鉴别诊断。从 RA 和 OA 队列的滑膜组织中检索了全基因组表达谱数据集,包括 GSE55235、GSE55457 和 GSE55584 数据集,并使用 R 软件确定 RA 和 OA 之间差异表达基因(DEG;P<0.05;错误发现率<0.05 和倍数变化>2)。对 DEG 进行基因本体论和京都基因与基因组百科全书通路富集分析,以确定与鉴定的 DEG 相关的分子和生化途径,并使用 Cytoscape 软件构建 DEG 的蛋白质-蛋白质相互作用(PPI)网络。使用分子复合物检测算法筛选 PPI 网络中的显著模块和候选驱动基因。通过接收者操作特征和逻辑回归分析评估潜在的生物标志物。在 GSE55235、GSE55457 和 GSE55584 数据集中分别检测到大量的 DEG,分别为 273、205 和 179 个 DEG。其中,在所有三个数据集中有 80 个 DEG 表现出相同的表达趋势,包括 RA 患者中 49 个上调和 31 个下调基因。与 OA 患者相比,RA 患者的 DEG 主要与原发性免疫缺陷途径相关,包括白细胞介素 7 受体(IL7R)和信号转导激活物 1(STAT1)。IL7R+STAT1 区分 RA 与 OA 的灵敏度为 93.94%,特异性为 80.77%。从 GSE36700 数据集分析生成的结果与从 GSE55235、GSE55457 和 GSE55584 数据集分析生成的结果密切相关,进一步验证了上述结果的可靠性。本研究结果表明,滑膜组织中 IL7R 和 STAT1 的表达增加以及原发性免疫缺陷可能与 RA 的发生有关。这些新发现的生物标志物可用于预测疾病的发生,并在临床上区分 RA 和 OA。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b2b3/6297798/341b1ea8180a/MMR-19-01-0030-g03.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b2b3/6297798/441a58112659/MMR-19-01-0030-g00.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b2b3/6297798/317bbc123026/MMR-19-01-0030-g01.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b2b3/6297798/bd2389baf913/MMR-19-01-0030-g02.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b2b3/6297798/341b1ea8180a/MMR-19-01-0030-g03.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b2b3/6297798/441a58112659/MMR-19-01-0030-g00.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b2b3/6297798/317bbc123026/MMR-19-01-0030-g01.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b2b3/6297798/bd2389baf913/MMR-19-01-0030-g02.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b2b3/6297798/341b1ea8180a/MMR-19-01-0030-g03.jpg

相似文献

[1]
Identification of potential biomarkers for differential diagnosis between rheumatoid arthritis and osteoarthritis via integrative genome‑wide gene expression profiling analysis.

Mol Med Rep. 2018-11-20

[2]
Identification of differential key biomarkers in the synovial tissue between rheumatoid arthritis and osteoarthritis using bioinformatics analysis.

Clin Rheumatol. 2021-12

[3]
Bioinformatics Analysis and Identification of Genes and Molecular Pathways Involved in Synovial Inflammation in Rheumatoid Arthritis.

Med Sci Monit. 2019-3-27

[4]
Identification of pivotal genes and pathways in the synovial tissue of patients with rheumatoid arthritis and osteoarthritis through integrated bioinformatic analysis.

Mol Med Rep. 2020-10

[5]
Analysis of common differential gene expression in synovial cells of osteoarthritis and rheumatoid arthritis.

PLoS One. 2024

[6]
Identification of Disease-Specific Hub Biomarkers and Immune Infiltration in Osteoarthritis and Rheumatoid Arthritis Synovial Tissues by Bioinformatics Analysis.

Dis Markers. 2021

[7]
Identification of genes and pathways in the synovia of women with osteoarthritis by bioinformatics analysis.

Mol Med Rep. 2018-1-15

[8]
Identification of novel biomarkers and candidate small molecule drugs in rheumatoid arthritis and osteoarthritis based on bioinformatics analysis of high-throughput data.

Biosci Rep. 2020-12-23

[9]
Bioinformatics analysis to identify key genes and pathways influencing synovial inflammation in osteoarthritis.

Mol Med Rep. 2018-10-23

[10]
Identification of differentially expressed genes in synovial tissue of rheumatoid arthritis and osteoarthritis in patients.

J Cell Biochem. 2018-9-27

引用本文的文献

[1]
Role of Total Body PET/CT in Inflammatory Disorders.

Semin Nucl Med. 2025-1

[2]
Multicohort study testing the generalisability of the SASKit-ML stroke and PDAC prognostic model pipeline to other chronic diseases.

BMJ Open. 2024-9-30

[3]
Comparison of inflammatory molecular mechanisms between osteoarthritis and rheumatoid arthritis via gene microarrays.

Mol Biol Res Commun. 2024

[4]
Identification and validation of immune-related genes in osteoarthritic synovial fibroblasts.

Heliyon. 2024-3-24

[5]
Identification of diagnostic biomarkers for osteoarthritis through bioinformatics and machine learning.

Heliyon. 2024-3-7

[6]
Machine learning-based endoplasmic reticulum-related diagnostic biomarker and immune microenvironment landscape for osteoarthritis.

Aging (Albany NY). 2024-2-28

[7]
Multiple gene-drug prediction tool reveals Rosiglitazone based treatment pathway for non-segmental vitiligo.

Inflammation. 2024-4

[8]
EXPLORing Arthritis with Total-body Positron Emission Tomography.

Semin Musculoskelet Radiol. 2023-12

[9]
The , and Genes Associated with Atherosclerosis May Be Potential Diagnostic Biomarkers for Psoriasis.

J Inflamm Res. 2023-2-27

[10]
Big data analyses and individual health profiling in the arena of rheumatic and musculoskeletal diseases (RMDs).

Ther Adv Musculoskelet Dis. 2022-6-30

本文引用的文献

[1]
CytoCluster: A Cytoscape Plugin for Cluster Analysis and Visualization of Biological Networks.

Int J Mol Sci. 2017-8-31

[2]
Identifying key genes in rheumatoid arthritis by weighted gene co-expression network analysis.

Int J Rheum Dis. 2017-8

[3]
New genes associated with rheumatoid arthritis identified by gene expression profiling.

Int J Immunogenet. 2017-6

[4]
Enhanced immunoregulation of mesenchymal stem cells by IL-10-producing type 1 regulatory T cells in collagen-induced arthritis.

Sci Rep. 2016-6-1

[5]
Integrative analysis of genome-wide association studies and gene expression analysis identifies pathways associated with rheumatoid arthritis.

Oncotarget. 2016-2-23

[6]
Mitochondrial DNA haplogroups modify the risk of osteoarthritis by altering mitochondrial function and intracellular mitochondrial signals.

Biochim Biophys Acta. 2016-4

[7]
D14 repeat polymorphism of the asporin gene is associated with primary osteoarthritis of the knee in a Mexican Mestizo population.

Int J Rheum Dis. 2015-12-1

[8]
Bioinformatics-Based Identification of MicroRNA-Regulated and Rheumatoid Arthritis-Associated Genes.

PLoS One. 2015-9-11

[9]
Humoral Primary Immunodeficiencies in Chronic Rhinosinusitis.

Curr Allergy Asthma Rep. 2015-8

[10]
Early biomarkers of joint damage in rheumatoid and psoriatic arthritis.

Arthritis Res Ther. 2015-6-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索