Suppr超能文献

寡糖基转移酶对蛋白质天冬酰胺糖基化的结构基础。

Structural Basis of Protein Asn-Glycosylation by Oligosaccharyltransferases.

机构信息

Division of Structural Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan.

出版信息

Adv Exp Med Biol. 2018;1104:171-199. doi: 10.1007/978-981-13-2158-0_9.

Abstract

Glycosylation of asparagine residues is a ubiquitous protein modification. This N-glycosylation is essential in Eukaryotes, but principally nonessential in Prokaryotes (Archaea and Eubacteria), although it facilitates their survival and pathogenicity. In many reviews, Archaea have received far less attention than Eubacteria, but this review will cover the N-glycosylation in the three domains of life. The oligosaccharide chain is preassembled on a lipid-phospho carrier to form a donor substrate, lipid-linked oligosaccharide (LLO). The en bloc transfer of an oligosaccharide from LLO to selected Asn residues in the Asn-X-Ser/Thr (X≠Pro) sequons in a polypeptide chain is catalyzed by a membrane-bound enzyme, oligosaccharyltransferase (OST). Over the last 10 years, the three-dimensional structures of the catalytic subunits of the Stt3/AglB/PglB proteins, with an acceptor peptide and a donor LLO, have been determined by X-ray crystallography, and recently the complex structures with other subunits have been determined by cryo-electron microscopy . Structural comparisons within the same species and across the different domains of life yielded a unified view of the structures and functions of OSTs. A catalytic structure in the TM region accounts for the amide bond twisting, which increases the reactivity of the side-chain nitrogen atom of the acceptor Asn residue in the sequon. The Ser/Thr-binding pocket in the C-terminal domain explains the requirement for hydroxy amino acid residues in the sequon. As expected, the two functional structures are formed by the involvement of short amino acid motifs conserved across the three domains of life.

摘要

天冬酰胺残基的糖基化是一种普遍存在的蛋白质修饰。这种 N-糖基化在真核生物中是必不可少的,但在原核生物(古菌和细菌)中主要是非必需的,尽管它有助于它们的生存和致病性。在许多评论中,古菌得到的关注远远少于细菌,但本综述将涵盖生命的三个领域的 N-糖基化。寡糖链预先组装在脂质磷酸载体上,形成供体底物,即脂连接寡糖(LLO)。在多肽链中,LLO 上的寡糖从特定的 Asn-X-Ser/Thr(X≠Pro)序列中的 Asn 残基到选定的 Asn 残基的整体转移是由膜结合酶,寡糖基转移酶(OST)催化的。在过去的 10 年中,通过 X 射线晶体学确定了 Stt3/AglB/PglB 蛋白的催化亚基与受体肽和供体 LLO 的三维结构,最近通过冷冻电子显微镜确定了与其他亚基的复合物结构。在同一物种内和不同生命领域之间的结构比较提供了 OST 结构和功能的统一观点。TM 区域中的催化结构解释了酰胺键扭曲的原因,这增加了序列中受体 Asn 残基侧链氮原子的反应性。C 末端结构域中的 Ser/Thr 结合口袋解释了序列中羟基氨基酸残基的要求。正如预期的那样,这两个功能结构是通过跨越生命的三个领域的保守短氨基酸基序的参与形成的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验