Suppr超能文献

利用理论计算和机器学习方法调控氢化硅、锗及硅锗纳米团簇的性质

Tuning Hydrogenated Silicon, Germanium, and SiGe Nanocluster Properties Using Theoretical Calculations and a Machine Learning Approach.

作者信息

Choi Yeseul, Adamczyk Andrew J

机构信息

Auburn University , Department of Chemical Engineering , Auburn , Alabama 36849 , United States.

出版信息

J Phys Chem A. 2018 Dec 27;122(51):9851-9868. doi: 10.1021/acs.jpca.8b09797. Epub 2018 Dec 11.

Abstract

There are limited studies available that predict the properties of hydrogenated silicon-germanium (SiGe) clusters. For this purpose, we conducted a computational study of 46 hydrogenated SiGe clusters (Si Ge H , 1 < X + Y ≤ 6) to predict the structural, thermochemical, and electronic properties. The optimized geometries of the Si Ge H clusters were investigated using quantum chemical calculations and statistical thermodynamics. The clusters contained 6 to 9 fused Si-Si, Ge-Ge, or Si-Ge bonds, i.e., bonds participating in more than one 3- to 4-membered rings, and different degrees of hydrogenation, i.e., the ratio of hydrogen to Si/Ge atoms varied depending on cluster size and degree of multifunctionality. Our studies have established trends in standard enthalpy of formation, standard entropy, and constant pressure heat capacity as a function of cluster composition and structure. A novel bond additivity correction model for SiGe chemistry was regressed from experimental data on seven acyclic Si/Ge/SiGe species to improve the accuracy of the standard enthalpy of formation predictions. Electronic properties were investigated by analysis of the HOMO-LUMO energy gap to study the effect of elemental composition on the electronic stability of Si Ge H clusters. These properties will be discussed in the context of tailored nanomaterials design and generalized using a machine learning approach.

摘要

目前关于氢化硅锗(SiGe)团簇性质预测的研究有限。为此,我们对46个氢化SiGe团簇(SiₓGeᵧHₙ,1 < X + Y ≤ 6)进行了计算研究,以预测其结构、热化学和电子性质。使用量子化学计算和统计热力学研究了SiₓGeᵧHₙ团簇的优化几何结构。这些团簇包含6至9个融合的Si - Si、Ge - Ge或Si - Ge键,即参与一个以上3至4元环的键,以及不同程度的氢化,即氢与Si/Ge原子的比例根据团簇大小和多功能程度而变化。我们的研究确定了作为团簇组成和结构函数的标准生成焓、标准熵和恒压热容的趋势。从七种无环Si/Ge/SiGe物种的实验数据中回归出一种用于SiGe化学的新型键加性校正模型,以提高标准生成焓预测的准确性。通过分析HOMO - LUMO能隙研究了电子性质,以探讨元素组成对SiₓGeᵧHₙ团簇电子稳定性的影响。这些性质将在定制纳米材料设计的背景下进行讨论,并使用机器学习方法进行概括。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验