Computer-Chemie-Centrum, Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nägelsbachstr. 25, 91052 Erlangen, Germany.
Phys Chem Chem Phys. 2018 Dec 12;20(48):30076-30082. doi: 10.1039/c8cp06786d.
Since quantum mechanical calculations do not typically lend themselves to chemical interpretation, analyses of bonding interactions depend largely upon models (the octet rule, resonance theory, charge transfer, etc.). This sometimes leads to a blurring of the distinction between mathematical modelling and physical reality. The issue of polarization vs. charge transfer is an example; energy decomposition analysis is another. The Hellmann-Feynman theorem at least partially bridges the gap between quantum mechanics and conceptual chemistry. It proceeds rigorously from the Schrödinger equation to demonstrating that the forces exerted upon the nuclei in molecules, complexes, etc., are entirely classically coulombic attractions with the electrons and repulsions with the other nuclei. In this paper, we discuss these issues in the context of noncovalent interactions. These can be fully explained in coulombic terms, electrostatics and polarization (which include electronic correlation and dispersion).
由于量子力学计算通常不适合进行化学解释,因此键相互作用的分析在很大程度上依赖于模型(八隅体规则、共振理论、电荷转移等)。这有时会导致数学建模和物理现实之间的区别变得模糊。极化与电荷转移的问题就是一个例子;能量分解分析则是另一个例子。赫尔曼-费曼定理至少部分地弥合了量子力学和概念化学之间的差距。它严格地从薛定谔方程出发,证明了分子、配合物等中原子核所受的力完全是经典的库仑引力,与电子之间是排斥力,与其他原子核之间也是排斥力。在本文中,我们将在非共价相互作用的背景下讨论这些问题。这些可以完全用库仑术语、静电学和极化(包括电子相关和色散)来解释。