Suppr超能文献

利用深度卷积神经网络预测 CRISPR sgRNA 活性。

Prediction of CRISPR sgRNA Activity Using a Deep Convolutional Neural Network.

机构信息

School of Public Health , Southwest Medical University , Luzhou , Sichuan , China.

Basic Medical College , Southwest Medical University , Luzhou , Sichuan , China.

出版信息

J Chem Inf Model. 2019 Jan 28;59(1):615-624. doi: 10.1021/acs.jcim.8b00368. Epub 2018 Dec 7.

Abstract

The CRISPR-Cas9 system derived from adaptive immunity in bacteria and archaea has been developed into a powerful tool for genome engineering with wide-ranging applications. Optimizing single-guide RNA (sgRNA) design to improve efficiency of target cleavage is a key step for successful gene editing using the CRISPR-Cas9 system. Because not all sgRNAs that cognate to a given target gene are equally effective, computational tools have been developed based on experimental data to increase the likelihood of selecting effective sgRNAs. Despite considerable efforts to date, it still remains a big challenge to accurately predict functional sgRNAs directly from large-scale sequence data. We propose DeepCas9, a deep-learning framework based on the convolutional neural network (CNN), to automatically learn the sequence determinants and further enable the identification of functional sgRNAs for the CRISPR-Cas9 system. We show that the CNN method outperforms previous methods in both (i) the ability to correctly identify highly active sgRNAs in experiments not used in the training and (ii) the ability to accurately predict the target efficacies of sgRNAs in different organisms. Besides, we further visualize the convolutional kernels and show the match of identified sequence signatures and known nucleotide preferences. We finally demonstrate the application of our method to the design of next-generation genome-scale CRISPRi and CRISPRa libraries targeting human and mouse genomes. We expect that DeepCas9 will assist in reducing the numbers of sgRNAs that must be experimentally validated to enable more effective and efficient genetic screens and genome engineering. DeepCas9 can be freely accessed via the Internet at https://github.com/lje00006/DeepCas9 .

摘要

CRISPR-Cas9 系统源自细菌和古菌的适应性免疫,已发展成为一种用于基因组工程的强大工具,具有广泛的应用。优化单指导 RNA(sgRNA)设计以提高目标切割效率是使用 CRISPR-Cas9 系统成功进行基因编辑的关键步骤。由于并非所有与给定靶基因同源的 sgRNA 都同样有效,因此已经基于实验数据开发了计算工具来增加选择有效 sgRNA 的可能性。尽管迄今为止已经付出了相当大的努力,但仍然很难直接从大规模序列数据中准确预测功能性 sgRNA。我们提出了 DeepCas9,这是一种基于卷积神经网络(CNN)的深度学习框架,可自动学习序列决定因素,并进一步实现 CRISPR-Cas9 系统中功能性 sgRNA 的识别。我们表明,CNN 方法在以下两个方面都优于以前的方法:(i)在未用于训练的实验中正确识别高度活跃 sgRNA 的能力;(ii)准确预测不同生物体中 sgRNA 靶效率的能力。此外,我们进一步可视化卷积核,并显示识别的序列特征与已知核苷酸偏好的匹配。我们最后展示了我们的方法在设计针对人类和小鼠基因组的下一代大规模 CRISPRi 和 CRISPRa 文库中的应用。我们期望 DeepCas9 将有助于减少必须通过实验验证的 sgRNA 数量,从而实现更有效和高效的遗传筛选和基因组工程。DeepCas9 可通过互联网在 https://github.com/lje00006/DeepCas9 上免费访问。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验