Roy Amrita Arup, Pokale Rahul, Mukharya Anoushka, Nikam Ajinkya Nitin, Dua Kamal, Rao Bola Sadashiva Satish, Seetharam Raviraja Neelavar, Mutalik Srinivas
Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia and Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia.
Curr Gene Ther. 2025;25(4):467-496. doi: 10.2174/0115665232342293241120033251.
The evolution of genetic exploration tools, from laborious methods like radiationinduced mutations to the transformative CRISPR-Cas9 system, has fundamentally reshaped genetic research and gene editing capabilities. This journey, initiated by foundational techniques such as ZFNs and TALENs and culminating in the groundbreaking work of Doudna and Charpentier in 2012, has ushered in an era of precise DNA alteration and profound insights into gene functions. The CRISPR/Cas9 system uses the Cas9 enzyme and guides RNA (gRNA) to precisely target and cleave DNA, with subsequent repair via error-prone NHEJ or precise HDR, enabling versatile gene editing. Complementary computational tools like E-CRISP and Azimuth 2.0, alongside advanced deep learning models like DeepCRISPR, have significantly contributed to refining CRISPR experiments, optimizing gRNA efficiency, and predicting outcomes with greater precision. In clinical applications, CRISPR-Cas9 shows great promise for treating complex genetic disorders like sickle cell disease and β-thalassemia, but faces challenges such as off-target effects, immune responses to viral vectors, and ethical issues in germline editing. Overcoming these challenges requires meticulous experimentation and robust regulatory frameworks to ensure responsible and beneficial utilization of the CRISPR-Cas9 technology across diverse fields, including cancer treatment, genetic disease therapies, agriculture, and synthetic biology, while continually addressing ethical, safety, and legal considerations for its advancement and widespread adoption.
从辐射诱导突变等费力的方法到变革性的CRISPR-Cas9系统,基因探索工具的发展从根本上重塑了基因研究和基因编辑能力。这一历程始于锌指核酸酶(ZFNs)和转录激活因子样效应物核酸酶(TALENs)等基础技术,并在2012年杜德纳(Doudna)和夏彭蒂耶(Charpentier)的开创性工作中达到顶峰,迎来了一个DNA精确改变以及对基因功能有深刻见解的时代。CRISPR/Cas9系统利用Cas9酶和引导RNA(gRNA)精确靶向并切割DNA,随后通过易出错的非同源末端连接(NHEJ)或精确的同源定向修复(HDR)进行修复,实现了多功能的基因编辑。像E-CRISP和Azimuth 2.0这样的互补计算工具,以及像DeepCRISPR这样的先进深度学习模型,对优化CRISPR实验、提高gRNA效率和更精确地预测结果做出了重大贡献。在临床应用中,CRISPR-Cas9在治疗镰状细胞病和β地中海贫血等复杂遗传疾病方面显示出巨大潜力,但面临着脱靶效应、对病毒载体的免疫反应以及生殖系编辑中的伦理问题等挑战。克服这些挑战需要精心的实验和强大的监管框架,以确保在包括癌症治疗、遗传疾病治疗、农业和合成生物学在内的各个领域对CRISPR-Cas9技术进行负责任且有益的利用,同时持续解决其发展和广泛应用中的伦理、安全和法律问题。