Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA.
Division of Pulmonary and Critical Care Medicine, Weill Cornell Medicine, New York, NY 10065, USA; email:
Annu Rev Physiol. 2019 Feb 10;81:453-482. doi: 10.1146/annurev-physiol-020518-114742. Epub 2018 Nov 28.
Mitochondria are an iconic distinguishing feature of eukaryotic cells. Mitochondria encompass an active organellar network that fuses, divides, and directs a myriad of vital biological functions, including energy metabolism, cell death regulation, and innate immune signaling in different tissues. Another crucial and often underappreciated function of these dynamic organelles is their central role in the metabolism of the most abundant and biologically versatile transition metals in mammalian cells, iron. In recent years, cellular and animal models of mitochondrial iron dysfunction have provided vital information in identifying new proteins that have elucidated the pathways involved in mitochondrial homeostasis and iron metabolism. Specific signatures of mitochondrial iron dysregulation that are associated with disease pathogenesis and/or progression are becoming increasingly important. Understanding the molecular mechanisms regulating mitochondrial iron pathways will help better define the role of this important metal in mitochondrial function and in human health and disease.
线粒体是真核细胞的标志性特征。线粒体包含一个活跃的细胞器网络,该网络融合、分裂并指导着无数重要的生物学功能,包括不同组织中的能量代谢、细胞死亡调控和先天免疫信号转导。这些动态细胞器的另一个关键且常常被低估的功能是它们在哺乳动物细胞中最丰富和生物适应性最强的过渡金属——铁的代谢中的核心作用。近年来,线粒体铁功能障碍的细胞和动物模型为鉴定阐明线粒体动态平衡和铁代谢相关途径的新蛋白质提供了重要信息。与疾病发病机制和/或进展相关的线粒体铁失调的特定特征变得越来越重要。了解调节线粒体铁途径的分子机制将有助于更好地定义这种重要金属在线粒体功能以及人类健康和疾病中的作用。