Suppr超能文献

通过湿浸渍法实现ZrO₂纳米颗粒中全四方相稳定化:主体结构、掺杂剂浓度与表征技术灵敏度的相互作用

Full Tetragonal Phase Stabilization in ZrO₂ Nanoparticles Using Wet Impregnation: Interplay of Host Structure, Dopant Concentration and Sensitivity of Characterization Technique.

作者信息

Colbea Claudiu, Avram Daniel, Cojocaru Bogdan, Negrea Raluca, Ghica Corneliu, Kessler Vadim G, Seisenbaeva Gulaim A, Parvulescu Vasile, Tiseanu Carmen

机构信息

National Institute for Laser, Plasma and Radiation Physics, RO 76900 Bucharest-Magurele, Romania.

Department of Chemistry, University of Bucharest, B-dul Regina Elisabeta, nr. 4-12, 030018 Bucharest, Romania.

出版信息

Nanomaterials (Basel). 2018 Nov 28;8(12):988. doi: 10.3390/nano8120988.

Abstract

Here, we show that wet impregnation of ZrO₂ nanoparticles with 10% and 20% Eu oxide followed by thermal anneal in air above 500 °C produces full stabilization of the tetragonal phase of ZrO₂ without evidencing any phase separation. The bare ZrO₂ nanoparticles were obtained using three synthetic methods: oil in water microemulsion, rapid hydrothermal, and citrate complexation methods. The homogeneity of the solid solutions was assessed using X-ray diffraction, Raman spectroscopy, high resolution transmission electron microscopy, and advanced luminescence spectroscopy. Our findings show that wet impregnation, which is a recognized method for obtaining surface doped oxides, can be successfully used for obtaining doped oxides in the bulk with good homogeneity at the atomic scale. The limits of characterization technique in detecting minor phases and the roles of dopant concentration and host structure in formation of phase stabilized solid solutions are also analyzed and discussed.

摘要

在此,我们表明,用10%和20%的氧化铕对ZrO₂纳米颗粒进行湿浸渍,然后在500℃以上的空气中进行热退火,可使ZrO₂的四方相完全稳定,且未出现任何相分离。通过三种合成方法制备了裸露的ZrO₂纳米颗粒:水包油微乳液法、快速水热法和柠檬酸盐络合法。使用X射线衍射、拉曼光谱、高分辨率透射电子显微镜和先进的发光光谱对固溶体的均匀性进行了评估。我们的研究结果表明,湿浸渍作为一种公认的获得表面掺杂氧化物的方法,可成功用于在原子尺度上获得具有良好均匀性的体相掺杂氧化物。还分析和讨论了表征技术在检测次要相方面的局限性以及掺杂剂浓度和主体结构在形成相稳定固溶体中的作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4de2/6316554/c8ad5d151b2c/nanomaterials-08-00988-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验