School of Life Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, P.R. China.
College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518000, P.R. China.
ChemSusChem. 2019 Feb 21;12(4):890-897. doi: 10.1002/cssc.201802440. Epub 2019 Jan 22.
Defect engineering is crucial in tailoring photocatalytic efficiency, but it suffers from uncertainty in determining the vacancy type and in which type of the vacancy can better promote the photocatalytic efficiency. In this study, Bi S nanorods with bismuth or sulfur vacancies were synthesized to investigate their distinct effects on the electronic structure, electron-hole separation characteristics, and near-infrared (NIR)-driven photocatalytic bacterial inactivation activity. Both bismuth and sulfur vacancies can enhance the light absorption ability of Bi S . However, the lifetime of photoinduced electrons is extended by bismuth vacancies but shortened by sulfur vacancies. Owing to these tendencies, Bi S with Bi vacancies fully inactivated 7 log E. coli cells within 40 min of NIR irradiation, displaying better NIR-driven photocatalytic bacterial inactivation efficiency than Bi S with S vacancies. This study discloses the defect-type-dependent photocatalytic behaviors, providing new insights into designing highly efficient photocatalysts.
缺陷工程在调整光催化效率方面至关重要,但在确定空位类型以及哪种类型的空位能更好地促进光催化效率方面存在不确定性。在这项研究中,我们合成了具有铋空位或硫空位的 Bi S 纳米棒,以研究它们对电子结构、电子-空穴分离特性以及近红外(NIR)驱动光催化细菌灭活活性的不同影响。铋空位和硫空位都可以增强 Bi S 的光吸收能力。然而,铋空位延长了光生电子的寿命,而硫空位则缩短了寿命。由于这些趋势,Bi S 中的 Bi 空位在 NIR 照射 40 分钟内完全灭活了 7 log E. coli 细胞,表现出比 Bi S 中的 S 空位更高的 NIR 驱动光催化细菌灭活效率。本研究揭示了缺陷类型依赖性的光催化行为,为设计高效光催化剂提供了新的见解。