Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, Jilin, China.
University of Chinese Academy of Sciences, Beijing, 100039, China.
Adv Mater. 2019 Mar;31(10):e1806808. doi: 10.1002/adma.201806808. Epub 2019 Jan 11.
Bismuth (Bi)-based nanomaterials (NMs) are widely used for computed tomography (CT) imaging guided photothermal therapy, however, the photodynamic property is hardly exhibited by these NMs due to the fast electron-hole recombination within their narrow bandgap. Herein, a sophisticated nanosystem is designed to endow bismuth sulfide (Bi S ) nanorods (NRs) with potent photodynamic property. Zinc protoporphyrin IX (ZP) is linked to Bi S NRs through a thermoresponsive polymer to form BPZP nanosystems. The stretching ZP could prebind to the active site of heme oxygenase-1 overexpressed in cancer cells, suppressing the cellular antioxidant defense capability. Upon NIR laser irradiation, the heat released from Bi S NRs could retract the polymer and drive ZP to the proximity of Bi S NRs, facilitating an efficient electron-hole separation in ZP and Bi S NRs, and leading to reactive oxygen species generation. In vitro and in vivo studies demonstrate the promising photodynamic property of BPZP, together with their photothermal and CT imaging performance.
基于铋(Bi)的纳米材料(NMs)广泛用于计算机断层扫描(CT)成像引导的光热治疗,然而,由于其窄带隙内的电子-空穴复合速度很快,这些 NMs 几乎没有表现出光动力特性。在此,设计了一种复杂的纳米系统,以使硫化铋(Bi S )纳米棒(NRs)具有强大的光动力特性。锌原卟啉 IX(ZP)通过热敏聚合物与 Bi S NRs 连接,形成 BPZP 纳米系统。拉伸的 ZP 可以预先与癌细胞中过表达的血红素加氧酶-1 的活性位点结合,抑制细胞抗氧化防御能力。在近红外激光照射下,Bi S NRs 释放的热量会回缩聚合物并将 ZP 驱动到 Bi S NRs 的附近,从而在 ZP 和 Bi S NRs 中实现有效的电子-空穴分离,并导致活性氧物质的生成。体外和体内研究证明了 BPZP 具有有前途的光动力特性,以及它们的光热和 CT 成像性能。