Gleave Katherine, Lissenden Natalie, Richardson Marty, Choi Leslie, Ranson Hilary
Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, UK, L3 5QA.
Cochrane Database Syst Rev. 2018 Nov 29;11(11):CD012776. doi: 10.1002/14651858.CD012776.pub2.
Public health strategies that target mosquito vectors, particularly pyrethroid long-lasting insecticidal nets (LLINs), have been largely responsible for the substantial reduction in the number of people in Africa developing malaria. The spread of insecticide resistance in Anopheles mosquitoes threatens these impacts. One way to control insecticide-resistant populations is by using insecticide synergists. Piperonyl butoxide (PBO) is a synergist that inhibits specific metabolic enzymes within mosquitoes and has been incorporated into pyrethroid-LLINs to form pyrethroid-PBO nets. Pyrethroid-PBO nets are currently produced by four LLIN manufacturers and, following a recommendation from the World Health Organization (WHO) in 2017, are being included in distribution campaigns in countries. This review examines epidemiological and entomological evidence on whether the addition of PBO to LLINs improves their efficacy.
We searched the Cochrane Infectious Diseases Group (CIDG) Specialized Register; CENTRAL, MEDLINE, Embase, Web of Science, CAB Abstracts, and two clinical trial registers (ClinicalTrials.gov and WHO International Clinical Trials Registry Platform) up to 24 August 2018. We contacted organizations for unpublished data. We checked the reference lists of trials identified by the above methods.
We included laboratory trials, experimental hut trials, village trials, and randomized clinical trials with mosquitoes from the Anopheles gambiae complex or Anopheles funestus group.
Two review authors assessed each trial for eligibility, extracted data, and determined the risk of bias for included trials. We resolved disagreements through discussion with a third review author. We analysed the data using Review Manager 5 and assessed the certainty of the evidence using the GRADE approach.
Fifteen trials met the inclusion criteria: two laboratory trials, eight experimental hut trials, and five cluster-randomized controlled village trials.One village trial examined the effect of pyrethroid-PBO nets on malaria infection prevalence in an area with highly pyrethroid-resistant mosquitoes. The latest endpoint at 21 months post-intervention showed that malaria prevalence probably decreased in the intervention arm (OR 0.40, 95% CI 0.20 to 0.80; 1 trial, 1 comparison, moderate-certainty evidence).In highly pyrethroid-resistant areas (< 30% mosquito mortality), in comparisons of unwashed pyrethroid-PBO nets to unwashed standard-LLINs, PBO nets resulted in higher mosquito mortality (risk ratio (RR) 1.84, 95% CI 1.60 to 2.11; 14,620 mosquitoes, 5 trials, 9 comparisons, high-certainty evidence) and lower blood feeding success (RR 0.60, 95% CI 0.50 to 0.71; 14,000 mosquitoes, 4 trials, 8 comparisons, high-certainty evidence). However, in comparisons of washed pyrethroid-PBO nets to washed LLINs we do not know if PBO nets have a greater effect on mosquito mortality (RR 1.20, 95% CI 0.88 to 1.63; 10,268 mosquitoes, 4 trials, 5 comparisons, very low-certainty evidence), although the washed pyrethroid-PBO nets do decrease blood feeding success compared to standard-LLINs (RR 0.81, 95% CI 0.72 to 0.92; 9674 mosquitoes, 3 trials, 4 comparisons, high-certainty evidence).In areas where pyrethroid resistance is considered moderate (31% to 60% mosquito mortality), there may be little or no difference in effects of unwashed pyrethroid-PBO nets compared to unwashed standard-LLINs on mosquito mortality (RR 1.16, 95% CI 0.88 to 1.54; 242 mosquitoes, 1 trial, 1 comparison, low-certainty evidence), and there may be little or no difference in the effects on blood feeding success (RR 0.87, 95% CI 0.67 to 1.13; 242 mosquitoes, 1 trial, 1 comparison, low-certainty evidence). The same pattern is apparent for washed pyrethroid-PBO nets compared to washed standard-LLINs (mortality: RR 1.07, 95% CI 0.74 to 1.54; 329 mosquitoes, 1 trial, 1 comparison, low-certainty evidence; blood feeding success: RR 0.91, 95% CI 0.74 to 1.13; 329 mosquitoes, 1 trial, 1 comparison, low-certainty evidence).In areas where pyrethroid resistance is low (61% to 90% mosquito mortality), there is probably little or no difference in the effect of unwashed pyrethroid-PBO nets compared to unwashed standard-LLINs on mosquito mortality (RR 1.10, 95% CI 1.05 to 1.16; 708 mosquitoes, 1 trial, 2 comparisons, moderate-certainty evidence), but there is no evidence for an effect on blood feeding success (RR 0.67, 95% CI 0.06 to 7.37; 708 mosquitoes, 1 trial, 2 comparisons, very low-certainty evidence). For washed pyrethroid-PBO nets compared to washed standard-LLINs we do not know if there is any difference in mosquito mortality (RR 1.16, 96% CI 0.83 to 1.63; 878 mosquitoes, 1 trial, 2 comparisons, very low-certainty evidence), but blood feeding may decrease (RR 1.50, 95% CI 0.89 to 2.54; 878 mosquitoes, 1 trial, 2 comparisons, low-certainty evidence).In areas were mosquito populations are susceptible to insecticides (> 90% mosquito mortality), there may be little or no difference in the effect of unwashed pyrethroid-PBO nets compared to unwashed standard-LLINs on mosquito mortality (RR 1.20, 95% CI 0.64 to 2.26; 2791 mosquitoes, 2 trials, 2 comparisons, low-certainty evidence). This is similar for washed nets (RR 1.07, 95% CI 0.92 to 1.25; 2644 mosquitoes, 2 trials, 2 comparisons, low-certainty evidence). We do not know if unwashed pyrethroid-PBO nets have any effect on blood feeding success of susceptible mosquitoes (RR 0.50, 95% CI 0.11 to 2.32; 2791 mosquitoes, 2 trials, 2 comparisons, very low-certainty evidence). The same applies to washed nets (RR 1.28, 95% CI 0.81 to 2.04; 2644 mosquitoes, 2 trials, 2 comparisons, low-certainty evidence).In village trials comparing pyrethroid-PBO nets to LLINs, there was no difference in sporozoite rate (4 trials, 5 comparison) and mosquito parity (3 trials, 4 comparisons).
AUTHORS' CONCLUSIONS: In areas of high insecticide resistance, pyrethroid-PBO nets reduce mosquito mortality and blood feeding rates, and results from a single clinical trial demonstrate that this leads to lower malaria prevalence. Questions remain about the durability of PBO on nets, as the impact of pyrethroid-PBO LLINs on mosquito mortality was not sustained over 20 washes in experimental hut trials. There is little evidence to support higher entomological efficacy of pyrethroid-PBO nets in areas where the mosquitoes show lower levels of resistance to pyrethroids.
以蚊媒为目标的公共卫生策略,尤其是拟除虫菊酯长效驱虫蚊帐(LLINs),在很大程度上促使非洲疟疾感染人数大幅减少。按蚊对杀虫剂的抗药性传播威胁到了这些成果。控制抗杀虫剂种群的一种方法是使用杀虫剂增效剂。胡椒基丁醚(PBO)是一种能抑制蚊子体内特定代谢酶的增效剂,已被添加到拟除虫菊酯长效驱虫蚊帐中,形成了拟除虫菊酯 - PBO蚊帐。拟除虫菊酯 - PBO蚊帐目前由四家长效驱虫蚊帐制造商生产,并且根据世界卫生组织(WHO)2017年的一项建议,正被纳入各国的分发活动中。本综述考察了关于在长效驱虫蚊帐中添加PBO是否能提高其功效的流行病学和昆虫学证据。
我们检索了Cochrane传染病组(CIDG)专业注册库;截至2018年8月24日的CENTRAL、MEDLINE、Embase、科学网、CAB文摘库以及两个临床试验注册库(ClinicalTrials.gov和WHO国际临床试验注册平台)。我们联系各组织获取未发表的数据。我们检查了通过上述方法识别出的试验的参考文献列表。
我们纳入了实验室试验、实验小屋试验、村庄试验以及针对冈比亚按蚊复合体或嗜人按蚊组蚊子的随机临床试验。
两位综述作者评估每项试验的纳入资格,提取数据,并确定纳入试验的偏倚风险。我们通过与第三位综述作者讨论解决分歧。我们使用Review Manager 5分析数据,并采用GRADE方法评估证据的确定性。
15项试验符合纳入标准:两项实验室试验、八项实验小屋试验和五项整群随机对照村庄试验。一项村庄试验考察了拟除虫菊酯 - PBO蚊帐对蚊子对拟除虫菊酯高度耐药地区疟疾感染患病率的影响。干预后21个月的最新终点显示,干预组的疟疾患病率可能降低(比值比0.40,95%置信区间0.20至0.80;1项试验,1组比较,中等确定性证据)。在拟除虫菊酯高度耐药地区(蚊子死亡率<30%),将未清洗的拟除虫菊酯 - PBO蚊帐与未清洗的标准长效驱虫蚊帐进行比较时,PBO蚊帐导致更高的蚊子死亡率(风险比1.84,95%置信区间1.60至2.11;14,620只蚊子,5项试验,9组比较,高确定性证据)和更低的吸血成功率(风险比0.60,95%置信区间0.50至0.71;14,000只蚊子,4项试验,8组比较,高确定性证据)。然而,将清洗后的拟除虫菊酯 - PBO蚊帐与清洗后的长效驱虫蚊帐进行比较时,尽管与标准长效驱虫蚊帐相比,清洗后的拟除虫菊酯 - PBO蚊帐确实降低了吸血成功率(风险比0.81,95%置信区间0.72至0.92;9674只蚊子,3项试验,4组比较,高确定性证据),但我们不清楚PBO蚊帐对蚊子死亡率是否有更大影响(风险比1.20,95%置信区间0.88至1.63;10,268只蚊子,4项试验,5组比较,极低确定性证据)。在拟除虫菊酯抗性被认为中等(蚊子死亡率31%至60%)的地区,未清洗的拟除虫菊酯 - PBO蚊帐与未清洗的标准长效驱虫蚊帐相比,对蚊子死亡率的影响可能几乎没有差异(风险比1.16,95%置信区间0.88至1.54;242只蚊子,1项试验,1组比较,低确定性证据),对吸血成功率的影响可能也几乎没有差异(风险比0.87,95%置信区间0.67至1.13;242只蚊子,1项试验,1组比较,低确定性证据)。清洗后的拟除虫菊酯 - PBO蚊帐与清洗后的标准长效驱虫蚊帐相比,情况相同(死亡率:风险比1.07,95%置信区间0.74至1.54;329只蚊子,1项试验,1组比较,低确定性证据;吸血成功率:风险比0.91,95%置信区间0.74至1.13;329只蚊子,1项试验,1组比较,低确定性证据)。在拟除虫菊酯抗性较低(蚊子死亡率61%至90%)的地区,未清洗的拟除虫菊酯 - PBO蚊帐与未清洗的标准长效驱虫蚊帐相比,对蚊子死亡率的影响可能几乎没有差异(风险比1.10,95%置信区间1.05至1.16;708只蚊子,1项试验,2组比较,中等确定性证据),但没有证据表明对吸血成功率有影响(风险比0.67,95%置信区间0.06至7.37;708只蚊子,1项试验,2组比较,极低确定性证据)。将清洗后的拟除虫菊酯 - PBO蚊帐与清洗后的标准长效驱虫蚊帐相比,我们不清楚蚊子死亡率是否有差异(风险比1.16,96%置信区间0.83至1.63;878只蚊子,1项试验,2组比较,极低确定性证据),但吸血率可能降低(风险比1.50,95%置信区间0.89至2.54;878只蚊子,1项试验,2组比较,低确定性证据)。在蚊子种群对杀虫剂敏感(蚊子死亡率>90%)的地区,未清洗的拟除虫菊酯 - PBO蚊帐与未清洗的标准长效驱虫蚊帐相比,对蚊子死亡率的影响可能几乎没有差异(风险比1.20,95%置信区间0.64至2.26;2791只蚊子,2项试验,2组比较,低确定性证据)。清洗后的蚊帐情况类似(风险比1.07,95%置信区间0.92至1.25;2644只蚊子,2项试验,2组比较,低确定性证据)。我们不清楚未清洗的拟除虫菊酯 - PBO蚊帐对敏感蚊子的吸血成功率是否有任何影响(风险比0.50,95%置信区间0.11至2.32;2791只蚊子,2项试验,2组比较,极低确定性证据)。清洗后的蚊帐情况相同(风险比1.28,95%置信区间0.81至2.04;2644只蚊子,2项试验,2组比较,低确定性证据)。在将拟除虫菊酯 - PBO蚊帐与长效驱虫蚊帐进行比较的村庄试验中,子孢子率(4项试验,5组比较)和蚊子怀卵率(3项试验,4组比较)没有差异。
在杀虫剂抗性高的地区,拟除虫菊酯 - PBO蚊帐可降低蚊子死亡率和吸血率,一项临床试验结果表明这会降低疟疾患病率。关于PBO在蚊帐上的耐久性仍存在疑问,因为在实验小屋试验中,拟除虫菊酯 - PBO长效驱虫蚊帐对蚊子死亡率的影响在超过20次清洗后未持续。几乎没有证据支持拟除虫菊酯 - PBO蚊帐在蚊子对拟除虫菊酯抗性较低的地区具有更高的昆虫学效果。