Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.
Advanced Photon Source, Argonne National Laboratory, Argonne, IL, 60439, USA.
Adv Mater. 2019 Jan;31(4):e1805389. doi: 10.1002/adma.201805389. Epub 2018 Nov 29.
Ferromagnetic insulators (FMIs) are one of the most important components in developing dissipationless electronic and spintronic devices. However, FMIs are innately rare to find in nature as ferromagnetism generally accompanies metallicity. Here, novel room-temperature FMI films that are epitaxially synthesized by deliberate control of the ratio between two B-site cations in the double perovskite Sr Fe Re O (-0.2 ≤ x ≤ 0.2) are reported. In contrast to the known FM metallic phase in stoichiometric Sr FeReO , an FMI state with a high Curie temperature (T ≈ 400 K) and a large saturation magnetization (M ≈ 1.8 µ f.u. ) is found in highly cation-ordered Fe-rich phases. The stabilization of the FMI state is attributed to the formation of extra Fe Fe and Fe Re bonding states, which originate from the relatively excess Fe ions owing to the deficiency in Re ions. The emerging FMI state created by controlling cations in the oxide double perovskites opens the door to developing novel oxide quantum materials and spintronic devices.
铁磁绝缘体 (FMI) 是开发无损耗电子和自旋电子器件的最重要组件之一。然而,由于铁磁性通常伴随着金属性,因此在自然界中 FMI 本质上很少见。在这里,通过故意控制双钙钛矿 SrFeReO 中两个 B 位阳离子的比例,外延合成了新型室温 FMI 薄膜。与已知的化学计量 SrFeReO 中的 FM 金属相相反,在高度阳离子有序的富 Fe 相中发现了具有高居里温度 (T ≈ 400 K) 和大饱和磁化强度 (M ≈ 1.8 µ f.u. ) 的 FMI 态。FMI 态的稳定归因于额外的 Fe Fe 和 Fe Re 键合态的形成,这是由于 Re 离子的缺乏导致相对过量的 Fe 离子引起的。通过控制氧化物双钙钛矿中的阳离子来产生的新兴 FMI 态为开发新型氧化物量子材料和自旋电子器件开辟了道路。