Suppr超能文献

使用由“封端芳烃”配体支撑的Rh(I)催化剂催化合成超线性链烯基芳烃:实现有氧催化

Catalytic Synthesis of Superlinear Alkenyl Arenes Using a Rh(I) Catalyst Supported by a "Capping Arene" Ligand: Access to Aerobic Catalysis.

作者信息

Chen Junqi, Nielsen Robert J, Goddard William A, McKeown Bradley A, Dickie Diane A, Gunnoe T Brent

机构信息

Department of Chemistry , University of Virginia , Charlottesville , Virginia 22904 , United States.

Materials and Process Simulation Center , California Institute of Technology , Pasadena , California 91125 , United States.

出版信息

J Am Chem Soc. 2018 Dec 12;140(49):17007-17018. doi: 10.1021/jacs.8b07728. Epub 2018 Nov 29.

Abstract

Alkyl and alkenyl arenes are used in a wide range of products. However, the synthesis of 1-phenylalkanes or their alkenyl variants from arenes and alkenes is not accessible with current commercial acid-based catalytic processes. Here, it is reported that an air-stable Rh(I) complex, (5-FP)Rh(TFA)(η-CH) (5-FP = 1,2-bis( N-7-azaindolyl)benzene; TFA = trifluoroacetate), serves as a catalyst precursor for the oxidative conversion of arenes and alkenes to alkenyl arenes that are precursors to 1-phenylalkanes upon hydrogenation. It has been demonstrated that coordination of the 5-FP ligand enhances catalyst longevity compared to unligated Rh(I) catalyst precursors, and the 5-FP-ligated catalyst permits in situ recycling of the Cu(II) oxidant using air. The 5-FP ligand provides a Rh catalyst that can maintain activity for arene alkenylation over at least 2 weeks in reactions at 150 °C that involve multiple Cu(II) regeneration steps using air. Conditions to achieve >13 000 catalytic turnovers with an 8:1 linear:branched (L:B) ratio have been demonstrated. In addition, the catalyst is active under aerobic conditions using air as the sole oxidant. At 80 °C, an 18:1 L:B ratio of alkenyl arenes has been observed, but the reaction rate is substantially reduced compared to 150 °C. Quantum mechanics (QM) calculations compare two predicted reaction pathways with the experimental data, showing that an oxidative addition/reductive elimination pathway is energetically favored over a pathway that involves C-H activation by concerted metalation-deprotonation. In addition, our QM computations are consistent with the observed selectivity (11:1) for linear alkenyl arene products.

摘要

烷基芳烃和烯基芳烃被广泛应用于各类产品中。然而,目前基于酸的商业催化工艺无法实现由芳烃和烯烃合成1-苯基烷烃或其烯基变体。在此,有报道称一种空气稳定的铑(I)配合物(5-FP)Rh(TFA)(η-CH)(5-FP = 1,2-双(N-7-氮杂吲哚基)苯;TFA = 三氟乙酸盐)可作为催化剂前体,用于将芳烃和烯烃氧化转化为烯基芳烃,后者经氢化后可得到1-苯基烷烃。已证明与未配位的铑(I)催化剂前体相比,5-FP配体的配位作用可提高催化剂的寿命,并且5-FP配位的催化剂允许使用空气原位循环铜(II)氧化剂。5-FP配体提供了一种铑催化剂,在150°C的反应中,该催化剂在涉及使用空气进行多个铜(II)再生步骤的情况下,至少可在2周内保持芳烃烯基化活性。已证明在8:1的线性:支化(L:B)比例下可实现超过13000次的催化周转。此外,该催化剂在以空气作为唯一氧化剂的有氧条件下具有活性。在80°C时,观察到烯基芳烃的L:B比例为18:1,但与150°C相比,反应速率大幅降低。量子力学(QM)计算将两条预测的反应途径与实验数据进行了比较,结果表明,氧化加成/还原消除途径在能量上比涉及协同金属化-去质子化的C-H活化途径更有利。此外,我们的QM计算结果与观察到的线性烯基芳烃产物的选择性(11:1)一致。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验