Suppr超能文献

用于芳烃烯基化的钯(II)和铑(I)催化前体:基于实验和计算研究的反应活性及机理比较评估

Pd(II) and Rh(I) Catalytic Precursors for Arene Alkenylation: Comparative Evaluation of Reactivity and Mechanism Based on Experimental and Computational Studies.

作者信息

Bennett Marc T, Jia Xiaofan, Musgrave Charles B, Zhu Weihao, Goddard William A, Gunnoe T Brent

机构信息

Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States.

Materials and Process Simulation Center, California Institute of Technology, Pasadena, California 91125, United States.

出版信息

J Am Chem Soc. 2023 Jul 19;145(28):15507-15527. doi: 10.1021/jacs.3c04295. Epub 2023 Jul 1.

Abstract

We combine experimental and computational investigations to compare and understand catalytic arene alkenylation using the Pd(II) and Rh(I) precursors Pd(OAc) and [(η-CH)Rh(μ-OAc)] with arene, olefin, and Cu(II) carboxylate at elevated temperatures (>120 °C). Under specific conditions, previous computational and experimental efforts have identified heterotrimetallic cyclic PdCu(η-CH)(μ-OPiv) and (η-CH)Rh(μ-OPiv) (OPiv = pivalate) species as likely active catalysts for these processes. Further studies of catalyst speciation suggest a complicated equilibrium between Cu(II)-containing complexes containing one Rh or Pd atom with complexes containing two Rh or Pd atoms. At 120 °C, Rh catalysis produces styrene >20-fold more rapidly than Pd. Also, at 120 °C, Rh is ∼98% selective for styrene formation, while Pd is ∼82% selective. Our studies indicate that Pd catalysis has a higher predilection toward olefin functionalization to form undesired vinyl ester, while Rh catalysis is more selective for arene/olefin coupling. However, at elevated temperatures, Pd converts vinyl ester and arene to vinyl arene, which is proposed to occur through low-valent Pd(0) clusters that are formed in situ. Regardless of arene functionality, the regioselectivity for alkenylation of mono-substituted arenes with the Rh catalyst gives an approximate 2:1 / ratio with minimal C-H activation. In contrast, Pd selectivity is significantly influenced by arene electronics, with electron-rich arenes giving an approximate 1:2:2 / ratio, while the electron-deficient (α,α,α)-trifluorotoluene gives a 3:1 / ratio with minimal functionalization. Kinetic intermolecular arene ethenylation competition experiments find that Rh reacts most rapidly with benzene, and the rate of mono-substituted arene alkenylation does not correlate with arene electronics. In contrast, with Pd catalysis, electron-rich arenes react more rapidly than benzene, while electron-deficient arenes react less rapidly than benzene. These experimental findings, in combination with computational results, are consistent with the arene C-H activation step for Pd catalysis involving significant η-arenium character due to Pd-mediated electrophilic aromatic substitution character. In contrast, the mechanism for Rh catalysis is not sensitive to arene-substituent electronics, which we propose indicates less electrophilic aromatic substitution character for the Rh-mediated arene C-H activation.

摘要

我们结合实验和计算研究,在高温(>120°C)下,使用钯(II)和铑(I)前体Pd(OAc)和[(η-C₆H₅)Rh(μ-OAc)]与芳烃、烯烃和羧酸铜,比较并理解催化芳烃烯基化反应。在特定条件下,先前的计算和实验研究已确定异三金属环状PdCu(η-C₆H₅)(μ-OPiv)和(η-C₆H₅)Rh(μ-OPiv)(OPiv = 新戊酸酯)物种可能是这些反应的活性催化剂。对催化剂物种形成的进一步研究表明,含一个铑或钯原子的含铜(II)配合物与含两个铑或钯原子的配合物之间存在复杂的平衡。在120°C时,铑催化生成苯乙烯的速度比钯快20倍以上。此外,在120°C时,铑对苯乙烯形成的选择性约为98%,而钯的选择性约为82%。我们的研究表明,钯催化对烯烃官能化形成不期望的乙烯基酯有更高的偏好,而铑催化对芳烃/烯烃偶联更具选择性。然而,在高温下,钯将乙烯基酯和芳烃转化为乙烯基芳烃,这被认为是通过原位形成的低价钯(0)簇发生的。无论芳烃的官能团如何,铑催化剂对单取代芳烃烯基化的区域选择性给出约2:1的比例,且C-H活化最少。相比之下,钯的选择性受芳烃电子性质的显著影响,富电子芳烃给出约1:2:2的比例,而缺电子的(α,α,α)-三氟甲苯给出3:1的比例,且官能化最少。动力学分子间芳烃乙烯基化竞争实验发现,铑与苯反应最快,单取代芳烃烯基化的速率与芳烃电子性质无关。相比之下,在钯催化下,富电子芳烃比苯反应更快,而缺电子芳烃比苯反应更慢。这些实验结果与计算结果相结合,与钯催化的芳烃C-H活化步骤一致,该步骤由于钯介导的亲电芳香取代性质而具有显著的η-芳鎓特征。相比之下,铑催化的机理对芳烃取代基电子性质不敏感,我们认为这表明铑介导的芳烃C-H活化的亲电芳香取代性质较弱。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验